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1 Overview of the Field
Computational Complexity Theory studies the inherent costs of algorithms for solving mathematical prob-
lems. Its major goal is to identify the limits of what is efficiently computable in natural computational
models. Computational complexity emerged from the combination of logic, combinatorics, information the-
ory, and operations research. It coalesced around the central problem of ”P versus NP” (one of the seven
open problems of the Clay Institute). While this problem remains open, the field has grown both in scope and
sophistication. Currently, some of the most active research areas in computational complexity are

• circuit complexity (both Boolean and arithmetic circuit models),

• pseudorandomness,

• proof complexity and the connections with circuit complexity and search heuristics.

Complexity theory has often been using (and contributing to) a number of different areas of mathematics:
logic, combinatorics, information theory, algebra, geometry, and analysis, to name just a few.

2 Recent Developments and Open Problems
Below we sample a few exciting recent developments in complexity.

Arithmetic circuit complexity. Building on the work by Valiant et al. [55], Agrawal and Vinay [1] observed
that even very shallow (depth 4) arithmetic circuits are powerful enough to simulate general arithmetic circuits
(with a certain increase in size). Later this result has been improved by Koiran [38] and Tavenas [52],
showing that a lower bound nω(

√
n) for a very special kind of arithmetic depth 4 circuits (homogeneous depth

4 circuits).would imply a superpolynomial lower bound for general arithmetic circuits.
These results clarify why it’s so difficult to prove lower bounds even for small constant-depth arith-

metic circuits. On the other hand, they also provide a potentially successful approach to proving general
lower bounds by focusing on shallow arithmetic circuits of certain particular form. There have been a num-
ber of recent exciting results in that direction, culminating with the work of Kayal et al. [37], and Kumar
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and Saraf [43], that gives a lower bound nΩ(
√
n) for depth 4 homogeneous arithmetic circuits, bringing us

tanatalizingly close to the holy grail of arithmetic circuit complexity — proving that Permanent requires
superpolynomial arithmetic circuit complexity.

Polynomial Identity Testing (PIT). Determining if a given arithmetic circuit computes an identically zero
polynomial (Polynomial Identity Testing problem) is a central problem in derandomization and in (arithmetic)
circuit complexity. While devising an efficient deterministic algorithm for PIT remains a major open question
in complexity theory, there has been some for restricted classes of arithmetic circuits, often with the help of
geometric ideas (e.g., Sylvester-Gallai analogs).

Very recently, Kopparty et al. [41] proved that PIT is polynomial-time equivalent to the problem of deter-
ministic multivariate polynomial factorization, another outstanding open problem in derandomization.

Boolean circuit complexity and SAT algorithms. A breakthrough circuit lower bound was proved by
Williams [59], showing that nondeterministic exponential-time computable problems require superpolyno-
mial constant-depth circuits with arbitrary counting (mod m) gates; previously, only the case of prime moduli
m was known. Recently, this bound was strengthened by Williams [58] to a more powerful class of circuits.

These and related lower bound results exploit a deep connection between circuit lower bounds and SAT
algorithms (or pseudorandom generators) for the same class of circuits. In particular, the classical lower
bounds for constant-depth circuits (AC0) and n3-size de Morgan formulas have been recently shown to yield
improved (better than naive brute force) SAT algorithms for the same class of circuits [30, 50] as well as new
pseudorandom generators [31].

There has also been more progress on strengthening classical lower bounds for formulas. For example,
Komargodski et al. [39] get a polynomial-time computable function that can’t be computed well on average
by any de Morgan formula of size below n3.

Very recently, Gavinsky et al. [23] made a step towards resolving the KRW Composition Conjecture
(about the depth complexity of the composition of two boolean functions), which would imply a new circuit
lower bound (against the class NC1 of O(log n)-depth boolean circuits). They proved a special case of
the KRW conjecture [35] for the composition of a boolean function and a universal relation. The proof
relies on the information-theoretic techniques that have been very useful in a number of recent results in
communication complexity.

Proof complexity, circuit complexity, and PIT. Recently, Grochow and Pitassi [25] introduced a new
proof system, the Ideal Proof System (IPS), that has tight connections to (algebraic) circuit complexity.
Namely, super-polynomial lower bounds on any Boolean tautology in IPS implies that the permanent does
not have polynomial-size algebraic circuits (VNP is not equal to VP). As a corollary to the proof, super-
polynomial lower bounds on the number of lines in Polynomial Calculus proofs (a previously studied proof
system) implies the Permanent versus Determinant Conjecture. Prior to this work, there was no proof sys-
tem for which lower bounds on an arbitrary tautology implied any computational lower bound. This work
begins to shed light on why proof complexity lower bounds have been so difficult to obtain, and highlights
the polynomial identity testing (PIT) problem as central to this issue. More specifically, IPS is polynomially
equivalent to standard Frege systems if a natural set of propositional axioms, satisfied by any Boolean cir-
cuit computing PIT, has subexponential-size Frege proofs. This work raises many exciting questions about
connections between PIT, algebraic circuit complexity and proof complexity.

3 Presentation Highlights
A number of exciting breakthrough results have been discovered in complexity theory in the last couple of
years. Some of these were presented at the workshop.

• Perhaps one of the most interesting results is a new construction of two-source extractors (related
to bipartite Ramsey graphs) due to Chattopadhyay and Zuckerman [6]. This result and some of the
follow-up work has been presented in the Extractors session of the workshop (see Section 3.1 below).
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• Wigderson and Garg gave two talks discussing some exciting recent progress on the complexity of
algebraic computation in the non-commutative case (see Section 3.2).

• Recent progress on locally decodable and locally testable error-correcting codes was reported by Saraf
and Kopparty (see Section 3.3).

• Finally, Regev gave a talk on the very recent (yet unpublished) result showing the reverse of the classi-
cal Minkowski theorem for lattices (see Section 3.4).

3.1 Randomness extractors
Randomness extractors theory is a field with origins attributed to von Neumann [47] who considered the
problem of efficiently generating random bits. Ideally, a randomness extractor would have been a function
Ext : {0, 1}n → {0, 1}m with the property that for any random variable X with min-entropy k, Ext(X) ≈ε
Um, where recall that X has min-entropy k if ∀x Pr[X = x] ≤ 2−k. Unfortunately, such a function does
not exist for entropy k < n−1 and ε < 1/2. Thus, several restricted types of randomness extractors were in-
troduced, including multi-source extractors [7, 2], seeded-extractors [48], and non-malleable extractors [16].

Although their original motivation was for the specific task of “purifying randomness”, extractors have
found dozens of applications for error correcting codes, circuit lower bounds, data structures, communica-
tion complexity, and so forth. Randomness extractors strengthen hash functions, expander graphs, and list-
decodable codes, and are very much related to pseudo-random generators [53]. This myriad of applications
and deep connections makes randomness extractors a central, vibrant and exciting field.

The most well understood type of extractors are seeded extractors. A function Ext : {0, 1}n × {0, 1}d →
{0, 1}m is a (k, ε)-seeded extractor if for any random variable X with min-entropy k, (Ext(X,S), S) ≈ε
Um × S for S that is uniform independent of X . The goal in to design efficiently computable extractors that
support min-entropy k that is as low as possible with respect to the sample length n and the desired error
guarantee ε. With respect to k, the extractor should output as many bits as possible. For the case of seeded
extractors, it is easy to prove the existence of a seeded extractor that supports min-entropy k = Ω(log(1/ε)),
has seed length d = O(log(n/ε)), and outputs m = k − O(log(1/ε)) bits. In a long line of work, that have
accumulated to [28, 17], seeded extractors with comparable parameters were obtained.

Motivated by the problem of privacy amplification, Dodis and Wichs [16] introduced the notion of a non-
malleable extractor. A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε) non-malleable extractor if for
any random variable X with min-entropy k, and for any functionA : {0, 1}d → {0, 1}d with no fixed points,
(Ext(X,S),Ext(X,A(S)), S) ≈ε Um × (Ext(X,A(S)), S).

Dodis and Wichs proved that non-malleable extractors with parameters comparable to those of standard
seeded extractors exist, though they left the problem of constructing non-malleable extractors for future
research. This proved to be a challenging task. The many successful techniques and ideas that were used
for the construction of seeded extractors fail to satisfy non-malleability. In a long, intense, line of work, new
techniques were developed in the form of new pseudo-random primitives such as correlation breakers [8, 5]
and independence-preserving mergers [10] which are at the core of existing constructions of non-malleable
extractors. The state of the art constructions of non-malleable extractors [11, 44] have seed length d =
O(log n) + Õ(log(1/ε)), support any min-entropy k = Ω(d), and output m = 0.49k output bits.

Although existing constructions of non-malleable extractors are optimal up to log log(1/ε) factors, an
important open problem would be to remove these excessive factors. This would imply improved con-
structions of two-source extractors [6, 4] and in particular, significantly improved constructions of Ramsey
graphs [49, 19]. By designing better correlation breakers, one can obtain such improvements. Thus, future
progress lies on the fundamental problem of breaking undesired correlations between random variables.

3.2 Deterministic polynomial time algorithms for non-commutative rank of sym-
bolic matrices

Avi Wigderson and Ankit Garg gave two talks on recent exciting results on deterministic efficient algorithms
for computing non-commutative rank of symbolic matrices [22, 33, 32]. Symbolic matrices are matrices
whose entries are linear functions in variables {x1, x2, . . . , xm} over a field F. Any such matrix can be
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expressed as a linear combination of the variables with matrix coefficients

L = x1A1 + x2A2 + · · ·+ xmAm

where A1, A2 . . . , Am are n× n matrices over F.
The main computational problem of interest (known as SINGULAR) regarding symbolic matrices is

determining whether a given symbolic matrix is invertible or not (over the field of fractions in the given vari-
ables). This problem has a dual life, depending on whether the variables commute or don’t commute. In the
commutative case this problem has an illustrious history and significance. It was first explicitly stated by Ed-
monds [18], and shown to have a randomized polynomial time algorithm by Lovasz [45]. The completeness
of determinant for arithmetic formulas by Valiant [54] means that singularity captures the celebrated Polyno-
mial Identity Testing (PIT) problem. The derandomization of the latter probabilistic algorithm for PIT is a
major open problem in complexity theory as it would imply nontrivial arithmetic or Boolean lower bounds,
due to a result of Kabanets and Impagliazzo [34].

In the non-commutative case even the meaning of this problem SINGULAR is unclear. It took decades
to fully define and understand the related notion of a “field of fractions” for non-commutative polynomials,
namely the free skew field over which we (attempt to) invert the matrix. However, this non-commutative
SINGULAR problem has many intuitive and clean equivalent formulations (some entirely commutative!).
It captures a non-commutative version of identity testing for polynomials and rational functions, provides a
possible avenue to attack the notorious commutative PIT version, and quite surprisingly, its different formu-
lations arise naturally in diverse areas of mathematics, revealing surprising connections between them.

The algorithm in [22] is a quantum generalization of Sinkhorn’s matrix scaling algorithm [51] (and works
only over subfields of C). It utilizes a non-trivial connection between non-commutative symbolic matrices
and completely positive operators. A completely positive operator is an operator L̃ : Mn(C) → Mn(C)

of the form L̃(P ) =
∑m
i=1AiPA

†
i . It turns out that the symbolic matrix L has full non-commutative rank

iff the corresponding operator L̃ is rank non-decreasing
(

Rank(L̃(P )) ≥ Rank(P ) for all P � 0
)

. This is
a non-trivial theorem which follows from the work of Cohn [9]. This rank non-decreasing property can
then be checked by testing the convergence of a natural iterative procedure (first suggested by Gurvits [27])
which tries to bring the operator L̃ into a doubly-stochastic form (operator and its dual both map identity
to identity). The analysis of this algorithm again relies on the different formulations of this SINGULAR
problem. Particularly, some invariant theoretic bounds due to Derksen [13] play an important role. This
operator scaling algorithm also solves a non-convex optimization problem which has found applications in
approximating optimal constants in Brascamp-Lieb inequalities [21].

The algorithm in [33, 32] is completely different and is an algebraic analogue of the augmenting paths
algorithm for perfect matching in bipartite graphs (and works over finite fields as well). The role of augment-
ing paths is played by Wong sequences. This algorithm and its analysis also draw upon the rich mathematical
structure around the non-commutative SINGULAR problem. Another way of phrasing Cohn’s result is that
the symbolic matrix L =

∑m
i=1 xiAi is singular (in the non-commutative case) iff A1, A2, . . . , Am admit a

shrunk subspace i.e. there exists V ⊆ Fn s.t. there exists aW ⊆ Fn s.t. dim(W ) < dim(V ) andAi(V ) ⊆W
for all i. This can be thought of as an algebraic analogue of Hall’s marriage theorem (in fact Hall’s theorem
is a special case when the Ai’s are elementary matrices corresponding to the edges of a bipartite graph). The
authors in [33, 32] use Wong sequences to keep producing evaluations of L (by specializing xi’s to matrices
of dimension roughly n) of higher and higher rank until the process stops and produces a shrunk subspace
witnessing the maximum rank. Along the way, they develop several fundamental mathematical results, for
example, regularity of rank of blow-ups of matrix spaces, which have led to remarkable progress in degree
bounds for semi-invariants of quiver representations (see [14]).

Now we list some of the interesting future directions and open problems. One is designing black box
algorithms for the non-commutative rank problem i.e. an algorithm that doesn’t even look at the matrices
A1, A2, . . . , Am. The only allowed access to the symbolic matrix L is via rank of evaluations at matrix
points i.e. queries of the form

Rank

(
m∑
i=1

Bi ⊗Ai

)
for matrices B1, B2, . . . , Bm of polynomial dimension. Both the algorithms in [22, 33, 32] are white box.
Another interesting direction is whether the techniques and results for the non-commutative rank problem
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can lead to progress for the commutative rank problem. Non-commutative rank is always within a factor 2 of
the commutative rank ([20]), so the algorithms for non-commutative rank yield a factor 2 approximation for
commutative rank (in deterministic polynomial time). In a very recent development, a greedy algorithm was
designed to give a deterministic PTAS for commutative rank [3] and Wong sequences played an important
role in the analysis of the algorithm! It is likely that other techniques and results from the non-commutative
rank problem will come into play as well. Finally, can one find more applications in optimization of non-
commutative rank problem. It already captures as special cases, bipartite matching, matroid intersection
(even in a hidden sense) [27] and Brascamp-Lieb inequalities/polytopes [21]. One interesting challenge is if
matching in general graphs can be reduced to non-commutative rank.

3.3 Error-correcting codes
An error-correcting code is given by an encoding map E : {0, 1}k → {0, 1}n, which “encodes” strings of
length k into strings of length n (everything can also be done with {0, 1} replaced by any finite set Σ; we
stick to {0, 1} for this discussion). The image of this map is called the code, which we will denote by C, and
its elements are called codewords. The main measures of the quality of an error-correcting code are its rate
R and its minimum distance δ. The rate R is defined to be k/n, which measures the redundancy/wastage
introduced in the encoding. The minimum distance δ ∈ (0, 1) is defined to the be the smallest (fractional)
Hamming distance (∆(·, ·)) between two distinct elements of C.

Since the late 1980s, error-correcting codes and the paradigms for constructing them found great impact
in theoretical computer science. In particular, error-correcting codes based on polynomials played a central
role in the development of Interactive Proofs, Probabilistically Checkable Proofs (PCPs), cryptographic hard-
core bits, hardness amplifiers and pseudorandom generators. The centerpiece of all these developments was
the fact that a multivariate low-degree polynomial over a finite field could be locally interpolated at a point
x by looking at the values taken by that polynomial on all other points of any line passing through x. This
endowed the evaluation table of a low-degree multivariate polynomial with some local robustness; errors can
be corrected by only looking at a few other entries of the table.

Motivated by this, one can define a locally decodable code as an error-correcting code equipped with a
(randomized) decoding algorithm, which when given as input a received word r ∈ {0, 1}n which is with
distance 0 < δ0 < δ

2 of a codeword, and a message coordinate i ∈ [k], the algorithm looks only at o(k)
entries of r and returns the “correct” message bit mi with high probability (i.e., if m is the unique codeword
such that ∆(E(m), r) < δ0, then the algorithm returns mi with high probability). Similarly one can define
locally testable codes, which come with a testing algorithm that with high probability distinguishes, using
few queries, between a given received word being within distance ε1 of some codeword, and being further
than distance ε2 of every codeword. This ability to work with error-correcting codes in sublinear-time formed
the conceptual heart of the various developments in theoretical computer science.

3.3.1 High rate error correcting codes

This writeup is on codes in the constant/high rate regime. This is the setting with huge potential applications
to data storage, and is also the setting where the most activity has been in recent years. For a long time, the
only known family of local codes in this regime were constant-variable Reed-Muller codes over large fields,
which are codes based on low degree polynomials. These codes could achieve any constant rate R < 1/2,
constant distance δ, and local testability/correctability withO(nεR) queries, where n is the length of the code.
In recent years, there has been a flurry of activity in this area [42, 26, 29, 40, 56, 57] resulting in many new
constructions of local codes of constant rate. These codes improved the rate-distance tradeoffs achievable by
locally testable codes and locally decodable codes, while also reducing the query complexity significantly.

Today the best bounds on query complexity that we know for high rate LDCs and LTCs are from the work
of [40] and the bounds obtained are as follows:

• LTCs which can achieve any constant rate R < 1, any constant distance δ < 1 − R, and with query
complexity

O((log n)O(log logn)),
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• LDCS (and LCCs) which can achieve any constant rate R < 1, any constant distance δ < 1 − R, and
with query complexity

O(2
√

logn log logn).

On the other hand, it is known that LDCs with constant rate require query complexity at least Ω(log n). For
LTCs, there is no lower bound on query complexity known, and for all we know LTCs with constant rate,
constant distance and constant query complexity could exist!

Even more recently, in [24] it was shown how to construct locally testable codes and locally decodable
codes that have rate versus distance tradeoff achieving the Gilbert-Varshamov bound over small alphabets.
In particular, this means that the best rate-distance tradeoff known for classical (non-local) codes can also be
achieved by codes that support local algorithms. For local testing the query complexity is quasipolylogarith-
mic, but for local decoding the query complexity is only polynomially small.

3.3.2 Open Questions

The main question that remains is to understand the optimal query complexity that can be supported by high
rate LDCs and LTCs. In particular

Question 3.1. Do locally decodable codes of constant rate and polylogarithmic decoding complexity exist?

Note that the running time of any local decoder cannot be smaller than logarithmic (since it needs to be
able to index coordinates of the received word it has access to). It turns out that this is also a lower bound on
the query complexity [36] (without considering running time).

Question 3.2. Do locally testable codes of constant rate and polylogarithmic query complexity, or even
constant query complexity exist?

For codes achieving the GV bound, one very interesting question is the following.

Question 3.3. Do there exist locally decodable codes over the binary alphabet with rate-distance tradeoff
approaching the Gilbert-Varshamov bound and subpolynomial query complexity?

3.4 Reverse Minkowski’s Theorem
Oded Regev from Courant Institute of Mathematical Sciences, New York University, gave a talk on a version
of Minkowski’s theorem for lattices, based on joint works with Daniel Dadush (CWI, Amsterdam) and Noah
Stephens-Davidowitz (Courant, NYU).

A lattice is the set of integer linear combinations of linearly independent basis vectors B = (b1, . . . , bn).
The determinant of the lattice det(L) = |det(B)| is a measure of its global density in the sense that

det(L) = lim
r→∞

vol(rBn2 )

|L ∩ rBn2 |
,

where rBn2 denotes the Euclidean ball of radius r. A celebrated theorem due to Minkowski from 1891
shows that a lattice with small determinant must also have many lattice points in a relatively small ball [46].
Informally, it says that if a lattice is globally dense, then it must also be locally dense.

Theorem (Minkowski’s Theorem (for `2 balls)). For any lattice L ⊂ Rn with det(L) ≤ 1 and r > 0,

|L ∩ rBn2 | ≥ 2−n · vol(rBn2 ) ≥ (r/
√
n)n .

This theorem is one of the foundational results in the study of lattices and the geometry of numbers,
and it has innumerable applications in algebraic number theory, sphere packing, computational complexity,
cryptography, and more. It is therefore quite natural to ask whether a converse of Minkowski’s Theorem
holds. In particular, if a lattice has sufficiently many points in a sufficiently small ball, does it necessarily
have small determinant? I.e., does local density imply global density?

It is easy to see that the answer is actually no. Consider, for example, the lattice generated by the vectors
(e1/s, s

2e2) for some arbitrarily large s. This lattice has as many points as we like in any ball around the
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origin (about 2sr + 1 points in a ball of radius r), but it has arbitrarily large determinant s. Notice, however,
that this lattice contains a sublattice generated by e1/s that does have small determinant (1/s). This leads
us to a more refined question: if a lattice has sufficiently many points in a sufficiently small ball, does it
necessarily have a small-determinant sublattice? I.e., does local density imply global density in a subspace?

Prior to our work, the best known results were quantitatively quite weak. But, to our knowledge, the worst
example is simply the integer lattice Zn, which has roughly nr

2

points in a ball of radius r > 0 for r �
√
n.

Dadush conjectured that any lattice whose sublattices all have determinant at least one must have fewer than
2O(poly log(n)r2) points in a ball of radius r > 0 [12, 15]. Our main result is a proof of this conjecture.

Theorem 3.4 (Reverse Minkowski Theorem). For any lattice L ⊂ Rn with det(L′) ≥ 1 for all sublattices
L′ ⊆ L, ∑

y∈L
e−πt

2‖y‖2 ≤ 3

2
,

where t := 10 log n+ 1.

In particular, the theorem implies that

|L ∩ rBn2 | ≤ 1 +
1

2
· eπt

2r2 ,

for any r > 0, as desired. The proof follows a framework suggested by Shapira and Weiss and relies on
techniques from convex geometry, including the ` position of convex bodies and Bobkov’s observation of a
“maximal Gaussian mass position”.

As described in [15], the theorem has many applications, including to computational complexity, cryptog-
raphy, Brownian motion on flat tori (answering a question of Saloff-Coste), Integer Programming (through a
conjecture of Kannan and Lovasz), additive combinatorics, Mikowski’s conjecture (through work of Shapira
and Weiss), and more.

Some of the remaining open questions include:

• Can we show a tight bound, namely, that Zn is the densest lattice?

• Can we extend the result to other convex bodies, thereby resolving the general Kannan-Lovasz conjec-
ture?

• Can the techniques be used to solve Minkowski’s conjecture?

4 Outcome of the meeting
The meeting provided a great overview of the field, with a number of excellent talks describing some recent
exciting results in complexity. There were also many group discussions among leading researchers as well
as young students and postdocs. It is quite certain that some new interesting results will emerge as a result of
the workshop.
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