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1 Overview of the Field
Dynamical systems T̂ : I → I typically model complicated deterministic processes on a
phase space I . The map T̂ induces a natural action on probability measures η on I via
η 7→ η ◦ T̂−1. Of particular interest in ergodic theory are those probability measures
that are T̂ -invariant; that is, η satisfying η = η ◦ T̂−1. By Birkhoff’s Ergodic Theorem,
if η is ergodic and invariant, then it describes the time-asymptotic distribution of orbits
of η-almost-all initial points x ∈ I . This picture is part of a well established classical
mathematical understanding of dynamical systems.

From an applications point of view, it is desirable to find the invariant measures η, and
analyse the way that typical orbits are “mixed” to the consequent equilibrium distribution.
When the space I is equipped with a natural “smooth” measure m (such as the Lebesgue
measure on subsets of Rd), the action of T̂ on η � m can be studied via the so-called
Frobenius–Perron (transfer) operator:

L dη
dm = d(η◦T̂−1)

dm

(see [32] for an introductory account). Numerical representation of L can be accomplished
via Ulam’s method [39]—a Galerkin type projection onto the space of piecewise constant
functions on partitions of I . As the underlying partitions are refined, the fixed points of
Ulam’s method are known to converge to densities of interesting T̂ -invariant measures
in a variety of settings [34, 15, 16, 18, 20, 17, 3, 37]. The quality of approximation is
determined in part by the speed at which orbits are “mixed” by T̂ , and the speed of mixing
is often controlled by the gap between the leading eigenvalue, and the rest of the spectrum
of L (on a suitable Banach space of test functions). Although the behaviour of this spectral
gap can be well-behaved under Ulam-type approximations [29, 11], the gap is often small,
frustrating efforts to control approximation errors. It has recently become clear [21, 19,
27, 25, 26, 22] that small spectral gaps are actually associated with metastable structures—
subsets of phase space I which exchange mass very slowly. Moreover, these structures crop
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up in a variety of real applications (eg, molecular conformation dynamics [14], spacecraft
orbits [12], large-scale ocean circulation [13]).

Consequently, the development of computational tools for identifying metastable states
is interesting and important. A particularly fruitful idea is to regard a (closed) dynami-
cal system is a union of interacting open subsystems. Essentially arbitrary open systems
can be obtained from (T̂ , I) by excising a “hole” H0 from I . Orbits are computed as
normal on X0 := I \ H0, but are lost to the system when they fall into H0. Because
trajectories are being lost to the hole, in many cases, there is no T -invariant probability
measure. One can, however, consider conditionally invariant probability measures, which
satisfy η ◦ T−1 = ρ η for some ρ ∈ (0, 1). This idea has a long history [38, 9, 8, 10],
and has seen an explosion of interest in recent years [35, 36, 30, 23, 7], with many of the
aforementioned references being focussed on the existence (or analytical approximation)
of conditionally invariant probability measures. Very recently, attention has focussed on
practical means of calculating these measures numerically [1, 2] and connecting them with
metastable behaviour in dynamical systems [28, 22].

2 Scientific progress made and open problems
Our activities at BIRS were in two main directions:

1. Rigorous analysis of the application of Ulam’s method [39] to the calculation of con-
ditionally invariant probability measures for Lasota-Yorke type maps [33] into which
“large” holes have been put. Using an analytical setup similar to that of Liverani and
Maume-Deschamps [35], we proved that Ulam’s method produces a sequence of
density functions which converge (in L1) to the density of the (unique) absolutely
continuous conditionally invariant probability measure for the open system, as well
as a sequence of measures which converge weak∗ to the conformal measure of the
open system (concentrated on the surviving repelling Cantor set). Unlike previous
work [1, 2] these results are not based in spectral perturbation theory [29, 30], so
are not limited to “small” holes. A manuscript containing these results will shortly
be submitted for publication [5]. Open problems include: generalising the setup
to higher dimensions; controlling rigorously the rate of convergence; and using the
method to study the interaction between multiple metastable states within a closed
system (as in [28, 22]).

2. Investigating alternatives to Ulam’s method for computation of invariant measures,
conditionally invariant measures and metastable states [6, 4, 31, 24]. This work
threw up many questions, which will form the basis of future projects by the group
participants.
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[36] M Mark F Demers and L-S Young. Escape rates and conditionally invariant measures.
Nonlinearity, 19:377–397, 2006.

[37] R. Murray. Ulam’s method for some non-uniformly expanding maps. Discrete Contin.
Dyn. Syst, Series A, 26(3):1007–1018, 2010.

[38] G Pianigiani and J Yorke. Expanding maps on sets which are almost invariant: decay
and chaos. Trans. Amer. Math. Soc., 252:351–366, 1979.

[39] S. M. Ulam. A collection of mathematical problems. Interscience Tracts in Pure and
Applied Mathematics, no. 8. Interscience Publishers, New York-London, 1960.


