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1 Overview of the Field
Taubes [11] laid the groundwork for new topological invariants motivated by Chern-Simons theory by show-
ing that the SU(2) Casson invariant of a homology 3–sphereM has a gauge theoretical interpretation as the
Euler characteristic of A/G in the spirit of the Poincaré-Hopf theorem, where he views the Chern-Simons
invariant
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as a S1-valued Morse function on A/G, A being the space of SU(2) connections onM and G the group of
gauge transformations. Taubes realized that the Hessian of the Chern-Simons invariant and the odd signature
operator coupled to the same path of SU(2) connections have the same spectral flow.

Using Taubes’s point of view, an SU(3) Casson invariant τ was introduced by [1] and later refined by [3],
where suitable correction terms needed to be incorporated to make the invariant independent of perturbations.
In the process of understanding this new invariant, a connected sum formulawas found [2], and computational
tools were developed for Dehn surgeries on (2, q)-torus knots [6] as well as for Brieskorn spheres [10, 4, 5].
These papers provide calculation methods for homology spheres obtained by several different cut and paste
methods, and the families of examples for which these have yielded calculations show intriguing patterns;
they have not, however, led to a conjectural formula for a general Dehn surgeries. It is therefore important to
continue exploring the behavior of the invariant under further cut and paste constructions.

2 Recent Developments and Open Problems
More recently, some results were obtained concerning the behavior of τ under the spliced sum construction.
Given knots K1 and K2 in homology 3-spheres M1 and M2, respectively, the spliced sum of M1 and M2

alongK1 andK2 is the homology 3-sphere obtained by gluing the two knot complements along their bound-
aries matching the meridian of one knot to the longitude of the other. This operation is a generalization of
connected sum; indeed when K1 and K2 are trivial knots, the spliced sum ofM1 andM2 along K1 and K2

is none other than the connected sumM1#M2.
Casson’s invariant λSU(2), which is additive under connected sum, is also additive under the more general

operation of spliced sum by Boyer and Nicas [8] and independently Fukuhara and Maruyama [9]. Recently,
the SU(3) Casson invariant for spliced sums of a (2, p) and (2, q) torus knotK1 andK2 in the 3–sphere was
computed in [7] as

τ(M) = 16 λ′(K1) λ
′(K2), (1)
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where λ′(K) is the SU(2) Casson knot invariant normalized to be 1 for the trefoil.
In this Research in Teams project we set out to extend these splice sum computations to splice sums

of arbitrary (p, q) torus knots. The flat moduli spaces of these knot complements, when p, q "= 2, is more
complicated, having a stratified structure. For this reason, the flat moduli space of such a splice sum is
necessarily degenerate, and requires perturbation to obtain a finite collection of points to count to evaluate
the invariant.

3 Scientific Progress Made
To reach our goal for Research in Teams of extending formula (1) to splice sums of arbitrary torus knots, the
following steps were necessary:

1. Analyzing the SU(3) representation varieties of the knot complements,

2. Determining suitable perturbations and the resulting perturbed moduli spaces, and

3. Computing the spectral flow between the perturbed components.

We have completed the first step, both for (p, q) torus knots and for complements of a singular fiber in a
3-fiber Brieskorn sphere. To be more precise, we determined not just the representation varieties but also the
restriction maps from the knot group representation varieties for X1 and X2 to the representation variety of
their common boundary T 2

R(X1, SU(3))
r1→ R(T 2, SU(3))

r2← R(X2, SU(3)).

In the cases being considered, the maps ri are not generally one to one, but have the form of slightly singular
fibrations above their images, which are smooth submanifolds of R(T 2, SU(3)), and the fibration structure
only breaks down along a codimension one subset of the image. We verified that the images of r1 and r2
meet transversely, for arbitrary torus knots.

Suppose r1 and r2 have transverse images in a small neighborhood of [α0] ∈ R(T 2, SU(3)). , and
suppose α = α1 ∪α0

α2 is nontrivial with Stab(α0) "= T 2, αi ∈ R(Xi, SU(3)). Set

C = {[β] ∈ R(M, SU(3)) | β = β1 ∪ β2 with βi ∈ r−1
i

(α0) and in same component as αi}.

We showed that C ⊂ R∗(M, SU(3)) and C is diffeomorphic to a fiber product of r−1
1 (α0) × r−1

2 (α0)
with S(U(2) × U(1))/Z3, and χ(C) = 0. This shows that many of the fiber products associated to many
intersections contribute zero to τ .

A more complicated situation occurs when α0 is a singular point for one or both of the fibrations ri. C
is a product of two 2–spheres, at least one of which has a reducible representation on it and is not cut out
transversely. This makes it more difficult to determine how this component contributes to τ after perturbation.

We verified that, when this happens, we could perturb so that the perturbed moduli space is obtained
as a fiber product is taken along smooth fibers, because, after perturbation, the singular points of r1 don’t
hit the image of r2, and vice versa. We therefore expect the components to resolve into 4 components in the
specific case of (2, q) torus knots. This prelimary work demonstrates that the current methods are sufficient to
calculate the value of τ on fiber sums of arbitrary (p, q) torus knots. To complete the calculation, we must do
some book keeping (counting the number of intersections, of the different types), and do complete the spectral
flow computations necessary to evaluate the signs and the correction terms. Again, our preliminary work
during the week at BIRS indicates that the currentmethods will handle the needed spectral flow computations.

It had been observed in [5] that the representation variety of the complement of a singular fiber in a
Brieskorn sphere has a similar stratified structure to that of the representation variety for a torus knot. In the
course of our work, we realized that property that the images of r1 and r2 are transverse holds as well in this
context. We were able to determine that most of the types of representation variety components for a splice
sum of Brieskorn spheres can be handled by the same techniques as we developed for splice sums of torus
knots, under a mild restriction on the Seifert invariants. (Unfortunately, the restriction on Seifert invariants
precludes our treating 4-fiber Brieskorn spheres as splice sums of singular fibers in 3-fiber Brieskorn spheres,
so this class of 3-manifolds remains a wide open challenge, but the allowable Seifert invariants still give
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many examples of interesting graph manifolds.) Unfortunately, splice sums of knots in nontrivial homology
spheres give rise to additional types of fiber product components (involving different orbit types of α1, α2

and α0) in the flat moduli space, so these Brieskorn sphere examples will require more analysis.

4 Outcome of the Meeting
In summary, our meeting provided the three participants, who bring three distinct areas of expertise to the
problem, the chance to develop common notation, and bring each other up to speed on the different aspects of
the problem. Our collaboration has led to dramatic progress on all three steps identified above in calculating
the SU(3) Casson invariant for splice sums of arbitrary torus knots. We are currently in the process of writing
up a paper with the results on splice sums of torus knots using the workshop notes as a basis.

The meeting also allowed us to understand much more deeply the steps that will be necessary to extend
our calculations to splice sums of Brieskorn spheres. Because of different orbit types of the representations
that show up in this case, more advanced transversality and spectral flow techniques will be necessary to
complete this project, but this line of research was also advanced significantly by our meeting.
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