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A prominent role in combinatorial geometry is played by Helly’s theorem, which states the following:

Helly’s Theorem (1913 [13]). Let A be a finite family of at leastd + 1 convex sets inRd. If everyd + 1
members ofA have a point in common, then there is a point common to all members ofA.

Helly’s theorem also holds for infinite families of compact convex sets, and has stimulated numerous
generalization and variants. Results of the type “if everym members of a family of objects have property
P then the entire family has the propertyP” are called Helly-type theorems. The minimum positive integer
m that makes this theorem possible is called the Helly number. Helly-type theorems have been the object of
active research, inspired by many of the problems posed in “Helly’s Theorem and Its Relatives” [7].

In the past ten years, there has been a significant increase in research activity and productivity in the area.
(For an excellent survey in the area, see [24].) Notable advances have been made in several subareas including
the development of a theory of hyperplane transversals (see [15]); the proofs of interesting colorful theorems
generalizing classical results (see [23]); and many others such as the problem of finding a line transversal to
a family of mutually disjoint congruent disks in the plane.

There are many interesting connections between Helly’s theorem and its relatives, the theorems of Radon,
of Caratheodory and of Tverberg. In fact, one of the most beautiful theorems in combinatorial convexity is
Tverberg’s theorem, which is ther-partite version of Radon’s theorem, and it is very closely connected with
the multiplied, or colorful versions of the theorems of Helly, Hadwiger and Caratheodory. The first of these
colorful versions was discovered by Barany and Lovasz and has many applications (see [3]).

This workshop brought together senior and junior researchers in the area with the objective of inter-
changing ideas and assessing recent advances, of fostering awareness of the inter-disciplinary aspects of the
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field such as geometry, topology, combinatorics, and computer science, and of mapping future directions of
research.

On Helly-type theorems, we had some talks dealing with colorful type theorems. In particular, Tamon
Stephen spoke about colorful simplicial depth, joint work with A. Deza, S. Huang, T. Terlaky and H. Thomas.
The simplicial depth of a pointp in Rd with respect to a finite setS of points is the number of(d + 1)-sets
from S whose convex hull containsp. In statistics, this is a measure of how wellp representsS.

A natural generalization is to consider colors on the points ofS and to pay attention only to the colorful
simplices containingp. In this presentation, the speaker exhibited a configuration wherep is in the convex
hull of each ofd + 1 colors, but is only ind2 + 1 colorful simplices, conjecturing that this is minimal and
proving a quadratic lower bound. This result sharpens Bár´any’s Colorful Carath´eodory Theorem and gives
an improved lower bound for monochrome simplicial depth.

Ricardo Strausz, reporting on joint work with J. Bracho and J. Bokowski, also spoke about some gener-
alization of the famous Barany-Carathedory theorem to oriented matroids of Euclidian dimension3. David
Csaba Toth presented a study of the worst-case complexity of the union of rainbow simplices determined by
a set of colorful points in Euclidean space. He also considered possible data structures to support efficient
containment queries.

A very nice natural generalization of Helly’s theorem is the piercing problem, also known as the(p, q)
problem, and was first investigated by Hadwiger and Debrunner [12]. On this topic, Pablo Soberon gave
interesting and deep bounds to the piercing number of a general family of convex sets in terms of the(p, q)r

property, that is, a finite family of convex sets with the property that for everyp convex sets there are at least
r q-tuples that intersect.

On the same lines, Deborah Oliveros introduced the notion ofk-tolerance and presented several results
related to the tolerance versions of the Helly, Caratheodory and Tverberg classical theorems.

One of the problems that has received much attention in this field has been the problem of finding a line
transversal to a family of mutually disjoint compact convex sets. (For an excellent survey on transversal
theorey, see [14].) In 1945, Vincessini asked whether there is a Helly-type theorem for line transversals to
a family of convex sets inR2. In other words, is there a numberm such that if everym members of the
family are simultaneously intersected by a line, then there exists a single line that intersects all members of
the family? The answer is no, even for line transversals to families of pairwise disjoint line segments.

In 1955 Hadwiger [11] posed the problem of determining the smallest numberk with the property that
if every collection ofk members of the family ofn ≤ k pairwise disjoint unit disks in the plane are met by
a line, then all the disks are met by a line; that is, he proposed to find a Helly number for the problem of
finding a line transversal to a family of disjoint unit disks in the plane. There is an example proposed in the
same paper by Hadwiger, consisting of5 almost touching disks centered at the vertices of a regular pentagon
in such a way that every four of them have a line transversal but the set of all of them does not. Hadwiger’s
problem was solved by Danzer [8], showing that a Helly number does exist fork = 5. In 1989 Tverberg [22]
gave a generalization of Danzer’s theorem on unit disks for disjoint translations of a compact convex set in
the plane.

Let us denote byF a family of ovals (compact convex sets with non-empty interior) in the euclidean
plane and let us say thatF has propertyT if there is a line that intersects all members ofF . If there is a line
that meets not all but at mostk members ofF , thenF has the propertyT − k. Finally, if eachk-element
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subfamily ofF has a transversal line, thenF has propertyT (k). In fact it is known that there is a familyF
of congruent ovals such thatT (5) does not implyT in general.

Later, in 1980, M. Katchalski and T. Lewis [17] proved that ifF is a family of translations of an oval,
thenT (3) impliesT − k for some universal constantk. This theorem generates several open branches for
interesting research options. In this workshop, problems of this type were presented, such as the one presented
by Ferenc Fodor who gave an an outline of a proof thatT (4) implies T − 1 for a family F of n mutually
disjoint unit disks in the plane (joint work with T. Bisztriczky and D. Oliveros).

Aladar Heppes talked about line transversals in super-disjointT (3)-families of translations of an oval.
Two translates,Ki andKj, are said to beϕ-disjoint, ϕ > 0, if the concentricϕ-enlarged copies ofKi and
Kj are disjoint. It is well known that in aϕ-disjoint family of congruent discs,T (3) ⇒ T if ϕ >

√
2, and

T (3) 6⇒ T if ϕ <
√

2. In his talk, Professor Aladar Heppes discussed finiteϕ-disjoint T (3)-families of
translates of an oval different from the disk.

T. Bistriczky, A. Heppes and K. Boroczky presented a preliminary report on theT (5) property for families
of overlapping unit disks, where they consider a finite familyF of unit disks in the plane with the properties
T (k): Any k-element subfamily ofF has a (line) transversal, andO(d): The distance between the centres
of any two elements ofF is greater thand. It is well known thatF has a transversal in each of the following
cases:

k = 3 andd > 2(
√

2) (sharp),

k = 4 andd > 4/
√

3 (sharp),

and k = 5 andd ≥ 2.

In particular, they presented results for the case whenk = 5 andd =
√

3.

Andreas Holmsen presented new and interesting results concerningT (k)-families related to classic results
and conjectures of Katchalski and Eckhoff. For a family of convex sets in the plane satisfyingT (k), it is
known that everyT (k) family has a partial line transversal of size at leasta(k)|F |, wherea(k) is a function
that tends to1 ask tends to infinity. Previous bounds on this function are due to Katchalski-Liu (1980) and
Eckhoff (2008). In this workshop, he presented some new (and sharper) bounds ona(k).

Line transversals to convex polytopes were also treated during the workshop by Otfried Cheong and
Natan Rubin. O. Cheong gave a very interesting talk about isolated line transversals to convex polytopes
in R3, where instead of treating general convex sets, he focuses on a familyF of convex polytopes inR3

satisfying propertyT . If in addition, such line transversals satisfy the property of being an isolated point in
the space of line transversals toF , we sayF is apinningof the line transversal.

In his talk, O. Cheong showed that any minimal pinning of a line by polytopes inR3 such that no face
of a polytope is coplanar with the line has size at most eight. Moreover, if in addition the polytopes are
disjoint, then it has size at most six. He completely characterized configurations of disjoint polytopes that
form minimal pinnings of a line.

Natan Rubin presented a joint work with Haim Kaplan and Micha Sharir. They showed some combina-
torial and algorithmical properties of line transversals of convex polytopes. In his presentation he discussed
an upper bound ofO(n2k1+e), for any e > 0, on the combinatorial complexity of the setT (P ) of line
transversals of a collectionP of k convex polyhedra inR3 with a total ofn facets. Thus whenk << n,
this is an improvement on the previously best known bounds, which are nearly cubic inn. Their analysis
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was curiously related to the three-dimensional variant of the following fundamental problem in geometric
transversal theory:

Given a collectionC of k pairwise-disjoint convex sets (of arbitrary description of complexity) inRd, find
a bound for the maximum numbergd(k) of geometric permutations, i.e., the maximum number of distinct
orders in which the transversal lines visit individual elements ofC. He also presented a related algorithmic
ray-shooting problem for the above collectionP of convex polyhedra, showing how to pre-processP into
a data structure which usesO∗(n poly(k)) storage and answers ray-shooting queries in polylogarithmic
time, provided that the ray origins are restricted to lie on a fixed line. This is a substantial improvement
over previously known techniques which require super-quadratic storage (as a function ofn, the number of
facets). This result can be generalized to a number of other cases when the lines containing query rays have
three degrees of freedom. Once again, handling distinct transversal orders is a key ingredient of the eventual
solution.

Instead of relating transversal hyperplanes to families of convex bodies we can also consider having
supporting hyperplanes of convex bodies and ask about Helly-type theorems for this case. On this topic, we
had an excellent exposition given by Valeriu Soltan, in which he presented “Helly-type Results on Common
Supports of Convex Bodies.” Following Dawson and Edelstein, he introduces the following definition: A
family F of convex bodies inRn has the propertyS provided there is a hyperplaneH that supports every
member ofF . Similarly,F has the propertyS(k) if every k-membered subfamily ofF has the propertyS.
He discussed some results and problems related to the Helly-type conditionS(k) ⇒ S.

Although many of the talks at this workshop on transversals and Helly-type theorems dealt essentially
with classical subjects related to this area, many of the talks also had deep relationships with other areas
of discrete and non-discrete mathematics, such as algebraic topology, polytopes, convex bodies, packing,
geometric permutations, and algebraic geometry.

In the area of well known problems, K. Bezdek presented a survey of the Tarski plank problem that
included new results and a list of interesting open research problems on the discrete geometric side of the
plank problem. In the 1930s, Tarski introduced his plank problem at a time when the field of Discrete
Geometry was about to be born. It is quite remarkable that Tarski’s question and its variants still continue to
generate interest in the geometric and analytic aspects of coverings by planks today.

Gergely Ambrus gave a talk on recent developments in the polarization problem. The polarization prob-
lem states that for any systemu1, . . . , un of unit vectors in ann-dimensional real Hilbert space, there exists a
unit vectorv such that(u1, v) . . . (un, v) ≥ n−n/2. In his talk, he presented an overview of recent results. In
particular, he posed a natural, stronger conjecture, and transformed both problems into a geometric setting.
By this means, it turns out that the strong polarization problem serves as the “proper” real analogue of the
complex plank problem, which was proved by K. Ball in 2001.

Arseniy Akopyan spoke on some generalizations of a diameter of sets and Jung’s problem. LetM be a
metric space. For eachp-element setW ⊂ M , there exists aq-element subsetU ⊂ W of diameter1. ThenM
can be divided into parts,M1, M2, . . . , Mp−1, in a such way thatdiamM1 + diamM2 + · · ·+ diamMp−1 ≤
[p−1
q−1

].

Antoine Deza presented some work on the Hirsch conjecture and more bounds on the diameter of convex
polytopes. He introduced the notion of∆(d, n) as the maximum possible edge diameter over all polytopes
defined byn inequalities in dimensiond. Hirsch’s conjecture, formulated in 1957, states that∆(d, n) is
not greater thann − d. No polynomial bound is known for∆(d, n), the best one being quasipolynomial
and due to Kalai and Kleitman in 1992. Goodey showed in 1972 that∆(4, 10) = 5 and∆(5, 11) = 6.
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Recently, Bremner and Schewe proved that∆(4, 11) = ∆(6, 12) = 6. In this follow-up work, he showed
that∆(4, 12) = 7 and presented evidence that∆(5, 12) = ∆(6, 13) = 7.

At this workshop we had two talks about packing problems, too. The first was given by Andreas Bezdek
on finite packings and the second one by W. Kuperberg on packing densities of convex cones. In this talk
he considered the familyC of convex bodiesK in R3, each of which is a cone over a convex plane disk,
and packing densities of all members of this family. If the admissible packings allow translations ofK or
translations ofK and−K (the symmetric image ofK) only, then he showed that there is a supremum smaller
than1 and an infimum greater than0 for the packing densities of allK in C, and these extreme values are
attained at certain members ofC. Since these densities are affine invariants, the packing density of eachK in
C depends only on its base. All four problems of finding the convex plane regions that produce cones whose
packing densities of this sort are extreme, and remain open. The analogous four problems on covering are
open as well. In his talk, he gave a motivation for considering arrangements of convex bodies consisting of
translates ofK and−K only, and he discussed some partial results and related ideas.

David Larman gave a nice presentation about skeleta and shadow boundaries of convex bodies. In his
talk, he defined thes-skeleton of a convex bodyK in euclidean space as the set of points ofK which are not
at the centre of ans + 1 dimensional disc contained inK. So for a polytope, the1-skeleton is the usual set of
edges and vertices. In his talk, D. Larman described many of the unsolved problems relating to thes-skeleton
as well.

Geometric permutations are an important subject in Helly-type theorems and geometric transversal which
could not, of course, be neglected during this workshop. Several interesting talks were given in this area: A
geometric permutation of a familyF of convex sets is a pair ofk-orderings induced by ak-transversal of
the familyF . The technique of double permutation sequences applied to the subject of arrangements of
pseudolines was presented by R. Pollack. In his presentation, he gave varius ideas and talked about his joint
work with several of his colleagues such as Jacob E. Goodman, Raghavan Dhandapani, Andreas Holmsen,
Shakhar Smorodinsky, Rephael Wenger, and Tudor Zamfirescu. He (re)introduced double permutation se-
quences, which provide a combinatorial encoding of arrangements of convex sets in the plane, and recalled
the notion of a topological affine plane and several of its properties (some new). In particular, he mentioned
that there is a universal topological affine planeP (i.e. any finite arrangement of pseudolines is isomorphic
to some arrangement of finitely many lines ofP ).

Helge Tverberg also gave an interesting talk about two problems from the Asinowski-H-K-T paper pub-
lished in 2003. The first problem deals with a pair of geometric permutations of disjoint translatesA, B, . . .
of an ovalK in the plane. For whichK can one have both permutationsABCX andBXAC simultane-
ously, i.e. four given sets that admit both of these permutations? The second problem deals with a sharp-
ening of Theorem 7b. Here one wishes to find a more complete characterization of thoseK for which
there are arbitrarily large families of translates ofK, admitting three geometric permutations of the forms
WBACXW ′,WABCXW ′,WBXACW ′.

Xavier Goaoc spoke about the growth rate of families of (geometric) permutations in a joint work with
Otfried Cheong (KAIST, Korea) and Cyril Nicaud (Univ. Marne-La-Vallee, France). In this interesting talk,
he showed how the asymptotic behavior ofP (m, k, n) asn goes to infinity depends onm andk, where
P (m, k, n) denotes the maximum size of a family of permutations on[n] = {1, . . . , n} that has at mostk
distinct restrictions to anym elements of[n]. He described some results in this direction.

Applications of algebraic topology to discrete geometry was an especially interesting topic. The com-
mon theme of several of the talks given in this workshop relating algebraic topology and discrete geometry,
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transversals and Helly-type theorems is the topology of the space of Grassmannians and its canonical vector
bundle together with the structure of the cohomology ring of these Grassmanian spaces. (See [6] and [21].)

In the 1990s, techniques and ideas of algebraic topology began to be used in a relevant and deep manner
to solve purely combinatorial problems. In fact, Laszo Lovasz used algebraic topology [19], particularly the
theory ofZ2-equivariant maps and the Borsuk-Ulam theorem to solve a conjecture of Kneser [18] concerning
the chromatic number of the graph ofk-subsets of ann-set. See [20].

After the publication of Lovasz paper, several different proofs were published [3]. One of these proofs
related computation of the chromatic number of the Kneser graphs, which is a purely combinatorial problem,
with the following geometric problem: What is the maximum numbern such that any finite setN ⊂ Rd

of sizen has a hyperplane transversal to the family of all convex hulls ofk-set ofN? It turns out that this
number is related to the chromatic number of the Kneser graphG2(n, k).

In his talk, Ramirez-Alfonsin definedM (k, d, λ) = the maximum positive integern such that every set
of n points inRd has the property that the convex hull of allk-sets have a transversal(d − λ)-plane, and he
introduced a specialKneser hypergraphestablishing a close connection between itschromatic numberand
M (k, d, λ). In fact, he defined theKneser hypergraphKGλ+1(n, k) as the hypergraph whose vertices are(

[n]
k

)
and a collection of vertices{S1, . . . , Sρ} is a hyperedge ofKGλ+1(n, k) if and only if 2 ≤ ρ ≤ λ + 1

andS1∩· · ·∩Sρ = φ. He remarked thatKGλ+1(n, k) is the Kneser graph whenλ = 1. Furthermore he noted
that the Kneser hypergraph defined by him is different from that defined in [2] and using the cohomology
structure of the space of Grasmannians and following the spirit of Dolnikov [9]. It is possible to prove that

χ(KGλ+1(n, k)) ≤ d − λ + 1, thenn ≤ M (k, d, λ).

Finally, he conjectured thatM (k, d, λ) = (d − λ) + k + d k
λe − 1.

In the first talk by R. N. Karasev, he discussed some results on the topology of the real Grassmannian
and its canonical vector bundle. These topological claims are mostly formulated in terms of the cohomology
index of the antipodalZ2-action on the sphere space of the canonical bundle.

One corollary of these topological results is a theorem that establishes the existence of ak-flat transversal
for a family F of d + 1 convex compact sets inRd, provided that for anyK ∈ F the intersectionK ∩
∂ (conv

⋃
F) has no antipodal points, and any(d− k)-dimensional linear image of

⋃
F is convex. Omitting

the requirement of convexity of any(d − k)-dimensional image, we obtain the existence of an equidistant
k-flat instead of the transversal.

A corollary on partitioningd measures inRd into parts of prescribed measure (compare the ham sandwich
theorem) by a single hyperplane was also discussed, generalizing some results of [5]. Another talk in this
workshop about the topology of Grassmannians and its canonical vector bundle was the talk given by Luis
Montejano. He defined when a familyF of convex sets inRd has atopologicalρ-transversal of index(m, k).
He established thatF has atopologicalρ-transversal of index(m, k), ρ < m, 0 < k ≤ d − m, if there
are, homologically, as many transversalm-planes toF asm-planes through a fixedρ-plane inRm+k. More
precisely, the familyF has a topologicalρ-transversal if

i∗([0, . . . , 0, k, . . . , k]) ∈ H(m−ρ)k(Tm(F), Z2)

is not zero, wherei∗ : H(m−ρ)k(G(m + 1, d + 1), Z2) → H(m−ρ)k(Tm(F), Z2) is the cohomology homo-
morphism induced by the inclusionTm(F) ⊂ M (d, m) ⊂ G(d + 1, m + 1) and

[0, . . . , 0, k, . . ., k] ∈ H(m−ρ)k(G(d + 1, m + 1), Z2).
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Clearly, ifF has aρ-transversal plane, thenF has a topologicalρ-transversal of index(m, k) for ρ < m
and k ≤ d − m. The converse is not true. It is easy to give examples of families with a topologicalρ-
transversal but without aρ-transversal plane. He conjectured that for a familyF of k + ρ + 1 compact,
convex sets in euclideand-spaceRd, there is aρ-transversal plane if and only if there is a topologicalρ-
transversal of index(m, k). The purpose of this was to state some cases of this conjecture and to use them,
together with the Lusternik-Schnirelmann category and several versions of the colorful Helly Theorem of
Lovasz, to obtain geometric results.

Some of these geometric results are the following:

For integersn, m > 1, let us now consider the configuration of points and lines in the plane that consists
of nm points andn + m lines, in which the firstn lines,`1, . . . , `n are parallel and vertical and the nextm
linesL1, . . . , Lm are parallel and horizontal. So every vertical line has exactlym points and every horizontal
line hasn points. Let us denote byLn,m the simplicial complex describing this configuration, in which we
haven (m−1)-simplices, corresponding to vertical lines andm (n−1)−simplices corresponding to vertical
lines. If [n] = {1, . . . , n}, then the vertices ofLn,m are [n] × [m] and for everyi = 1, . . . , n, the subset
{(i, 1), . . . , (i, m)} is an(m−1)-simplex ofLn,m and for everyj = 1, . . . , m, the subset{(1, j), . . . , (n, j)}
is an(n − 1)−simplex ofLn,m.

In his talk, Montejano stated that for every linear embedding ofLn,m ⊂ Rn+m−3, either there is an
(n − 2)-plane transversal to the(m − 1)-simplices ofLn,m or there is an(m − 2)-plane transversal to the
(n − 1)-simplices ofLn,m.

He also stated the following result in the spirit of the colorful Helly results [4]: LetF be a family of
(n + 1)(ρ + 2) compact, convex sets inRn+ρ+1 painted withn + 1 colors, in which we haveρ + 2 convex
sets of each color,n ≥ 1, ρ ≥ 1. Suppose that every heterochromatic(n + 1)-subset ofF is intersecting.
Then there is a color and aρ-transversal plane to all convex sets ofF painted with this color.

Homotopy Theory was also presented at the workshop. In his talk, Michel Pocchiola showed that any
two arrangements of double pseudolines of the same size are homotopic via a finite sequence of mutations
during which the only moving curves are the curves that belong to the set difference of the two arrangements.
He showed us how the proof is based on a enhanced version of the Pumping Lemma of [10] of independent
interest. He also discussed a second application of this enhanced version of the Pumping Lemma.

As mentioned above, there are many interesting connections between Helly’s theorem and its relatives.
At the workshop, Roman Karasev discussed some theorems focusing mostly on the Tverberg theorem. He
proved a dual Tverberg theorem for hyperplanes based on the following notion of separation.

Let Fi be a family ofd+1 hyperplanes inRd in general position,i = 1, . . . , n. We say that then families
{Fi}n

1 are separated if the intersection of then simplices generated by each one of the families is empty.

The dual Tverberg Theorem stated by Karasev is that a familyF of (d + 1)n hyperplanes in general
position inRd can be partitioned inton subfamilies which are non-separated, wheren is a prime power.
Karasev claimed that the main tool of his proof is to find the obstruction to the existence of a counterexample.
This obstruction is defined as the Euler class of a equivariant vector bundle. He claimed that new results can
be obtained by the multiplying the obstructions as in the following technical result:

Let 0 ≤ m ≤ d − 1 and let ri (i = 0, . . . , m) be powers of the same primeri = pki. If p is odd, let
d− m be even. For eachi = 0, . . . , m let fi map continuously an(ri − 1)(d −m + 1)-dimensional simplex
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∆i = ∆(ri−1)(d−m+1) to Rd. Then every simplex∆i hasri pointsxi1, xi2, . . . , xiri ∈ ∆i with pairwise
disjoint supports so that all the pointsfi(xij) are contained in a singlem-flat.

Javier Bracho used the ruling structure of symmetric hyperboloids to study flat transversals to flats and
convex sets of a fixed dimension. In his talk he recalled that Hadwiger considered in [11] the possibility of a
Helly-type theorem for transversal lines to a family of convex sets. He also observed that an extra hypothesis
about the hitting order of transversal lines to subfamilies of a given size must be assumed. His result was
generalized by Goodman and Pollack (see [16]) to one of transversal hyperplanes with the notion of order
type, which generalizes the notion of order for lines given by J. Arocha, L. Montejano and the speaker ([1])
and proves a Hadwiger-type theorem for transversal lines to convex sets of dimension1. This is closely related
to a Helly-type theorem for transversal lines to a family of lines in projective space (of any dimension). That
is, if every six of them have a transversal line, they all do. In this talk, these ideas were extended to results
about transversal flats to finite families of convex sets or projective flats of any pair of dimensions where an
extra hypothesis is made concerning “general position” of the families. In this talk, a family of flats is defined
to bek-generic if everyk + 1 of them are in general position, or equivalently, if nok + 1 of them have a
transversal(k − 1)-flat.

The main results of these talks are that a family ofm-genericn-flats has a transversalm-flat if every
subfamily with 1

2 (3n + 2m + 7) or fewer elements has a transversalm-flat and if a family ofm-generic
convex sets of dimensionn has a transversalm-flat if they correspond to an order type of dimensionm such
that every subfamily with2n + m + 3 elements has a transversalm-flat compatible with that order type.

The workshop was successful in many ways, bringing together old and new colleagues from all over the
world. We had participants from many countries including Russia, England, France, USA, Mexico, Italy,
Canada, Hungary, and Denmark, among others. The talks were far from being the only academic activity of
the workshop. We had many formal and informal mathematical discussions and all these activities have given
rise to many new research projects and new collaboration.

We had the chance to share nice anecdotes in the lounge of Corvett Hall, such as the one by Professor
Tverberg about how he created his famous theorem, which has been mentioned several times above.

Walks along the river and the wonderful view of the mountains, especially the hike to the top of Sulfur
Mountain on the free Wednesday afternoon, no doubt generated friendships and good mathematical discus-
sions.

The workshop was so successful that many of the participants agreed to submit their work so that a
special volume dedicated to this workshop could be published in the Journal of Discrete and Computational
Geometry.

Unfortunately due to health issues, Professor Ted Bistriczky and Professor Eli Goodman were unable
to come, but they were both missed and behind the organization at all times. We also had other absences,
particularly some Mexican students who were unable to demonstrate their financial solvency to the Canadian
Embassy. We strongly believe that something has to be done in terms of gender equity since only one female
organizer was able to attend.

We appreciate and would like to say thank you for the support we have received from BIRS. The ex-
cellent facilities and environment that it provides are perfect for creative interaction and the exchange of
ideas, knowledge, and methods within the Mathematical Sciences. We would like to thank programme co-
ordinator Wynne Fong and Station Manager Brenda Williams for all their support in the organization of the
conference. We would like to thank as well all the participants of the Transversal and Helly-type theorems
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in Geometry, Combinatorics and Topology Workshop 09w5047 for all their enthusiasm and the productive,
enjoyable environment that was created.
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