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1 Overview of the Field

Geometry, as learned by students of grade school, is the business of lines, angles, circles and triangles. It’s
useful because, locally, the concepts of geometry are similar to objects of our world. Using geometry, we can
compute areas, heights, and angles. Almost all of us know some geometry. Many of us need it, from time to
time.

It’s mostly about lines. A line is the shortest distance between two points. On a manifold M, with
Riemannian metric g, the length of a curve m(t) from ¢ = a to t = b is computed from

b
length? E/ g(m/(t),m/(t)) dt.

To find the “straight line” between m; and msq is to minimize this length functional among curves m(t) with
m(a) = mq and m(b) = mo.

What has that got to do with mechanics? With F' = ma? To begin with, another notion of “straight line”
is the path of a unforced particle. That is Newton’s first law. At a far deeper level, Hamilton’s principle [1, 43]
of mechanics states that frictionless motion in a configuration space ) in general occurs on curves ¢(t) which
extremalize the functional

b
SE/ L(q'(1)) dt, (1)

where L (the Lagrangian) is typically the difference of the kinetic and potential energies. From L one can
construct a two form w on T'Q), and an energy function F on T'Q), such that the solutions of the variational
principle (1) are exactly the integral curves of the Hamiltonian vector field X g i.e. integral curves the unique
vector field that satisfies

ixpw=dE. 2)

Morphisms that preserve w preserve these equations, which shows that conservative classical mechanics
fundamentally occurs in the context of the category of symplectic manifolds.



Generally, we have a pair (M, w, E), where w is a closed nondegenerate two form on M, and E is a
smooth function on M, and the evolution of the system is again via equations (2). If a Lie group acts of M in
such a way that w and F are invariant, then the solutions are preserved. These are the Hamiltonian systems
with symmetry, and they are nongeneric in the set of all Hamiltonian systems. It is useful to separate the
part of the dynamics that occurs due to symmetry from the generic part. By results collectively referred to as
Noether’s theorems, for every symmetry, there is a conserved quantity for the dynamics; and the conserved
quantities in turn generate the symmetries. These conserved quantities, counting one for every independent
symmetry, are typically packaged into a single momentum map from the phase space to the dual of the Lie
algebra of the symmetry group. The quotients in the symplectic category are complicated because, besides
reducing orbits to points, they also have to account for the momentum map, or else one does not get to
a generic context. This is reduction, and the foundational work is [45]. Sequential partial reductions—
reduction by stages—are an important part of the theory, because they allow for finer grained elimination of
symmetry [39, 40]. And there are also ways to reduce from the basic Lagrangian variational principles [16,
17,31, 42, 44]

Smooth quotients are only expected when the symmetry group acts freely, and singularities are expected
where there is isotropy. In Hamiltonian systems, there are two sources for singularities in the quotients:
from isotropy of the symmetry and from singularity in the momentum map. Because the symmetries and the
momentum are so intimately related, these singularities occur at exactly the same places in phase space [2].
The singular quotients in symplectic geometry are Whitney stratified spaces, where the stratifications are by
isotropy type and momentum [5, 54, 57, 67].

Equilibria are of course fundamental organizing solutions for dynamical systems. In the presence of
symmetry one can seek equilibria in the quotients; these are the relative equilibria and they are solutions
that are the actions of one parameter groups of the symmetry. Relative equilibria, such as occur in the
restricted three body problem of celestial mechanics, are of great physical interest, and have been studied
since the outset of mechanics. One of the important tools of Geometric Mechanics is special coordinates near
relative equilibria, derived from symplectic geometry’s various linear splittings together with the (equivariant)
Darboux theorem [56, 58, 59, 65, 71]. The coordinates are helpful to determine the structure of the set of
relative equilibria, as in [53, 58, 61, 64, 66, 74]. Extensions to relative periodic orbits occur in [55, 74, 75],
and numerical continuation is considered in [76].

The stability of relative equilibria can be delicate, as the spectrum of the linearizations in Hamiltonian
system cannot all be in the negative real half plane, and asymptotic stability is impossible. Using energy and
momenta for the Lyapunov functions can provide conditions for robust stability. But generically there are
also regions where such Lyapunov stability fails and the spectra is purely imaginary. This situation is a an
important target of one of the principle advances in Science in the last century: the KAM theory, which arose
from early questions about the stability of the solar system [4], and in many cases forms of stability may
be recovered even here [24, 25, 52]. KAM stability, or, in higher dimensions, stability over exponentially
long times is delicate. It can be destroyed through resonance [7], or by the introduction of arbitrarily small
dissipation (dissipation induced instability) [9, 22, 33, 34].

There are other ways to write equations (2). Given functions f and g, the Poisson bracket of { f, g} of f
and g is

{f.9} = w(Xs, X,)

and the solutions of the variational principle (1) are equivalent to

df
o ={s.B}.
This leads to Poisson geometry [43, 72]. There is little advantage between symplectic and Poisson geometry
at this level. But in the quotients by the actions of groups the symplectic geometry occur as the leaves of
the Poisson spaces; the latter coherently assembles the former into a whole. Both are important, and they are
different viewpoints.

There are extensions. If a mechanical system is constrained in its velocities, such as a penny, ball, or egg,
rolling on a table, then the geometry is altered. This is nonholonomic mechanics [13], and it necessitates
generalizations, from symplectic to semi-symplectic, and Poisson to almost Poisson. Different categories
mean different morphisms, and different basic properties. For example, energy is conserved, but not mo-
mentum, or you couldn’t turn any rolling vehicle (local nonconservation of angular momentum). Since



momentum and symmetry in holonomic mechanics are related, the quotients in these generalizations take
a different form. The geometry of nonholonomic systems is complicated, and its development relatively
recent [6, 11, 37, 38, 60, 68].

Other important extensions occur in field theories i.e. essentially, partial differential equations. A classic
example is the realization of the motion of a perfect fluid as a geodesic flow on the group of volume preserving
diffeomorphisms [3, 23]. Of course differential geometry and field theories are not strangers: the theories
of general relativity, and gauge field theories [50, 51], are all heavily geometric, and no summary can do
justice to the developments. Field theories may be generally cast geometrically, in a similar way as geometric
mechanics, as is seen in the works [27, 28, 29], and the references therein.

All these ideal conservative systems are central. Most fundamentally they arise as above from variational
principles, and give rise, as already mentioned, to the category of symplectic and Poisson manifolds, which
themselves are of great current interest to Mathematics. For mechanical systems, such as rigid body systems,
the phase spaces are finite dimensional, while for field theories they are infinite dimensional. While physical
systems are seldom exactly symmetric, or exactly conservative, there are often physical regimes for which
they are nearly so, and thus for which the dominant or organizing behaviors are those of the ideal systems.
For example, small dissipation might be superposed on a conservative system, or a system might be obtained
by breaking the symmetry of a perfectly symmetric system. The symmetric, conservative systems are an
organizing center for the subject.

Discrete analogies occur, in 1956 [70], and then rediscovered in [18], as integration algorithms for the
ordinary differential equations of holonomic mechanics. It was long known that the flows of mechanics
are canonical, and so preserve the volume of phase space. In the geometric setting, the flows preserve the
symplectic form, and so are morphisms of the symplectic manifolds. Integration algorithms that are iterations
of a single symplectic map preserve the dynamical features of classical mechanical systems, over long times,
better than generic algorithms. Thus began in 1990 a cascade of work of geometric integration algorithms, as
discussed for example in the books [30, 36], and extended to nonholonomic systems [19, 48]. Significant is
the development of discrete mechanics, which is towards discrete models that reflect physical reality so well
that they have a status with continuous models. The continuous models are fundamentally variational. The
variational foundations of discrete Lagrangian mechanics, where the continuous tangent bundle phase space
is replaced by pairs of configurations, and the action integral is a sum over sequences of pairs, occur in [49],
and as developed as such in [46, 63, 73]. This is extended to nonholonomic systems in [21, 20], and to first
order variational field theories in [41].

“Ballistic” refers to the free flight of a projectile. But if the projectile is to arrive at a specific target, then
controlled motion is far more effective. Automatic control is an important area in engineering; devices of
all sorts have to be guided and stabilized to particular states or modes of motion. Control theory is one of
the main application areas of geometric mechanics, as witnessed by the recent books of Bloch [8] and Bullo
and Lewis [15].

In the most primitive form, one has a number of control inputs represented by coefficients of a sum of
vector fields. The question is whether there is a curve in parameter space which causes a transit between any
two given points of configuration or phase space. This is the issue of controllability, and it is an early appli-
cation of differential geometry: the Lie bracket of two control vector fields may be generated by alternately
running one, the other, and then the reverse, so the number of control vector fields required may be reduced
if those vector fields do not commute [69]. Feedback control refers to the problem of designing a way of
setting the control parameters, bases on the evolving state itself, so that a particular trajectory is achieved,
and stable. Recent work of this in the geometric setting occurs for example in [10, 12]. Optimal control
refers to the additional requirement that some quantity, such as fuel, energy, or time, be minimized. The
constraints of optimal control lead to fundamentally different variational principles than the constraints of
nonholonomic mechanics. Discrete mechanics is playing a key role in control as well, with the development
of applications of discrete mechanics to optimal control [32]. And there is an interesting recent application
to image restoration [47].

Differential geometry and mechanics are fundamentally related, as are differential geometry and physics.
Geometric Mechanics enhances the traditional approach to mechanics by the inclusion of ideas from differ-
ential geometry, nicely balanced with analytical methods. While this idea has its roots going back to the
founders of mechanics, such as Jacobi, there has been a resurgence of these ideas in the past few decades,
with the infusion of many new ideas and links. For instance, it is a basic fact that the standard Hopf fibration



of S3 to S2, usually thought of as belonging to pure topology (or bundle theory) already occurs in rigid
body mechanics (going back to Euler and Lagrange). The geometric approach to mechanics flourishes today:
it has its own internal beauty and research (such as stability theory and singular reduction theory), as well
as substantial contributions to neighboring areas, such as molecular systems, classical field theories (fluids,
solids, electromagnetism, gravity, etc.), to control theory, and to computational mechanics. In Geometric
Mechanics today, we use concepts and compute properties that could not be easily discerned without the
differential-geometric context, some of which did not exist even a decade ago.

2 Presentation Highlights

2.1 Special Lectures

We had three special lectures, of one hour duration, in the evenings.

Jerry Marsden (Caltech), spoke about variational integrators and optimal control, and Lagrangian coherent
structures (LCS). While the free dynamics of conservative systems is always ideal and therefore of special
application, the application of control is wide open. Jerry explained how the established work towards discrete
analogies in mechanics can help solve to solve problems in optimal control. LCS can help understand mixing,
transport and barriers in fluid flows (e.g., ocean and atmosphere) and other dynamical systems. It can also be
used to decide drifter deployment, and understand pollution dispersion, oil spills.

Tudor Ratiu (Ecole Polytechnique Federale de Lausanne) considered the Lagrangian and Hamiltonian
structures for an ideal gauge-charged fluids [26]. These are geometrically complex infinite dimensional
examples. The discussion include a Kelvin-Noether theorem non-canonical Poisson bracket associated to
these systems.

Jedrzej Sniatycki (Calgary) considered the commutativity of quantization and reduction. The important
new aspect is the lack of assumptions on the group action, so that the Theorem below addresses possible
singularities in the classical system:

Theorem 3 Assumptions:

1. Let P be a Kahler manifold, w be the Kahler form on P and F be given by antiholomorphic directions.

2. Suppose that an action of a connected Lie group G on (P,w) has an Adj; equivariant momentum map
J: P — g* and preserves F.

3. Let O be a quantizable co-adjoint orbit admitting a Kahler polarization Fo such that quantization of
(O,wo) in terms of the polarization F' gives rise to an irreducible unitary representation Up of G.

4. Suppose that there exists a Lagrangian subspace of (P,w) contained in J~1(O).

Then the space of square integrable wave functions, obtained by quantization of algebraic reduction at O,
defines on H a projection operator T1° such that TI° (H) is the closed subspace of H on which the quan-
tization representation U is equivalent to UC. Here H denotes the space of square integrable holomorphic
sections of L — P.

2.2 Relative equilibria

James Montaldi (Manchester) presented on bifurcations of relative equilibria at zero momentum. A result of
Roberts and Patrick [61], states that generically, SO(3) symmetric Hamiltonian systems have no equilibria.
Montaldi answered why this is not the case for simple mechanical systems.

The problem of Riemann Ellipsoids has an long and important history, going back to Newton, MacLaurin,
Dirichlet, Riemann and Poincare. It has its origins in the attempt to provide an explanation to the rotating
figure of the Earth. Miguel Rodriguez-Olmos reviewed this problem from the point of view of Differential
Geometry and discussed how the geometric perspective can give some insight into the nonlinear stability of
some of its classical solutions.

Understanding the structure of the relative equilibria or periodic orbits of a system means following
manifolds of them in phase space and understanding their bifurcations. It is generally impossible to do



this exactly. Frank Schilder and Claudia Wulff discussed this problem, and presented the software system
SYMPERCON for numerical bifurcation analysis of Hamiltonian relative periodic orbits. SYMPERCON
accounts for, and takes advantage of, the nongenericity of Hamiltonian systems with symmetry in the class
of all systems with symmetry.

Saari’s conjecture is that every solution of the planar Newtonian N-body problem with constant moment
of inertia is a relative equilibrium. Cristina Stoica (Wilfrid Laurier) presented recent work showing that, for
generic rotationally-invariant vector fields in the plane, Saaris conjecture is true: the only constant-inertia
solutions are the relative equilibria [66].

The stability of relative equilibria is sensitive to the topology of the orbit space of the coadjoint action
of the symmetry group [62]. Claudia Wulff (Surrey) presented work proving that, in the Kirchhoff model
for the motion of an axisymmetric underwater vehicle, relative equilibria that were thought to be robustly
stabilized by spin are in fact only KAM stable. Furthermore, there is numerics that showing dissipation
induced instability in this case.

2.3 Control

Future space missions like Terrestrial Planet Finder (NASA) and Darwin (ESA) will make use of a network
of formation flying spacecraft. In these missions, the requirements on the accuracy on the relative positioning
of the craft are extremely high. In addition, reconfigurations of the formation have to be performed at regular
intervals with minimal energetic effort. Oliver Junge (Munich University of Technology) showed how the
recently developed variational method DMOC (Discrete Mechanics and Optimal Control) for the numerical
computation of optimal open-loop controls for mechanical control systems can be applied to this problem.

Suppose you have a network of sensor equipped vehicles and you want to coordinate and stabilize the
motion of your fleet. Sujit Nair explained the you can couple the system to yield a multi-body Lagrangian
system, and use controlled Lagrangians and matching conditions. The symmetry of these systems depends on
the context: SO(3) for spacecraft and SE(3) for underwater vehicles. He also spoke about about coordinating
hovercrafts for the purpose of surveillance, and showed a wonderful movie showing coordination of inverted
pendula on connected rolling carts.

Andrew Lewis (Queens) spoke about energy shaping, which is a control strategy wherein one converts a
given mechanical system (called the open-loop system) to another mechanical system (called the closed-loop
system) with desired properties. He gave an affine differential geometric formulation of the energy shaping
problem and gave a complete description of part of the problem using techniques from the formal theory of
partial differential equations.

2.4 Discrete systems; numerics

Melvin Leok (Purdue University) discusses the synthesis of Lie group techniques and variational integra-
tors to construct symplectic-momentum methods which automatically stay on Lie groups and homogeneous
spaces without the need for constraints, local coordinates, or reprojection. These are integrators that simulta-
neously preserving the symplectic and Lie group properties.

George Patrick (Saskatchewan) presented a new development of variational discretizations, based on
discrete analogues of tangent bundles, obtained by systematically extending tangent vectors to finite curve
segments. He showed that existence and uniqueness of the discrete evolutions can be analyzed by blowing up
the variational principles at zero time-step. These methods can automatically convert any one-step numerical
method to a variational method of the same order.

Ari Stern (California Institute of Technology) presented applications of variational integrators to electro-
magnetism. This uses discrete versions of the exterior calculus of differential forms.

2.5 Other

In the wide group of participants, there are, inevitably, presentations that span areas or that do not seem to
naturally classify with other presentations of this workshop.



Anthony Bloch (Michigan) considered Hill’s equation with random forcing terms. Andreu Lazaro (Zaragoza),

Nawaf Bou-Rabee (Caltech), and Stephane Chretien discussed aspects of stochastic systems, which is an
emerging area which everyone anticipates will be important [14, 35]

Katlin Grubits (Hawaii) presented “Self-assembly of particles using isotropic potentials”. Eva Kanso
(University of Southern California) talked about low order models of swimming. Oleg Kirillov (Moscow M. V.
Lomonosov State University) considered models of rotating bodies of revolution being in frictional contact.
This has applications to well-known phenomena of acoustics of friction, such as the squealing disc brakes,
and singing wine glass Rouslan Krechetnikov (Carleton) considered dissipation-induced instability phenom-
ena in both finite-dimensional mechanical systems, and an infinite-dimensional two-layer quasi-geostrophic
beta-plane model, which describes the fundamental baroclinic instability in atmospheric and ocean dynam-
ics Antonio Hernandez-Garduno (Universidad Nacional Autonoma de Mexico) discussed the averaging of
Lagrangian systems, illustrating it with the example of the forced inverted pendulum.

There were presentations on general theory. Lie groupoids are a unifying thrust of geometry. Manuel
de Leon (Instituto de Matematicas y Fisica Fundamental) considers geometric Hamilton—Jacobi theory on
almost Lie algebroids, with applications to nonholonomic mechanical systems. Rui Loja Fernandes (Insti-
tuto Superior Tecnico) asked what happens with respect to reduction for general (non-free) proper Poisson
actions. This involved defining Poisson stratified spaces and results which establish that U( ") My /G is
a Poisson stratification of M /G, where there is a Poisson action of G on M. Ivan Struchiner (UniCamp-
Campinas—Brasil) began by asking, up to isometries, what are all constant curvature Riemannian metrics in a
neighborhood of 0 € R?? Similar classification problems appear in many other settings, including geometric
mechanics, pdes, variational problems, etc. He presented a general approach to such classification problems
using Lie algebroids and Lie groupoids. Cotangent bundles are a principle example in geometric mechanics,
and indeed every regular Lagrangian system and a cotangent bundle fomulation, wherein the symplectic form
is canonical. Tanya Schmah (Macquarie) presented explicitly construction of symplectic tubes, particularly
for 7*() and a group G acting by cotangent lifts. Symplectic tubes are symmetry adapted coordinates near
group orbits of GG, and they are one of the more important applications of the symplectic geometry in mechan-
ics. Dan Offin (Queen’s) reviewed some translations of the Maslov index, and explained how to use them to
predict stability and instability for global periodic solutions determined by variational principles.

Bifurcations, even in the absence of Hamiltonian structures, are highly geometric. Luciano Buono (Uni-
versity of Ontario Institute of Technology) considered steady-state bifurcations in reversible-equivariant vec-
tor fields. He showed that the analysis of these bifurcations can be reduced to the study of bifurcations of
an equivalent equivariant vector field with no time-reversibility, sometimes also having parameter symmetry
and for which a bifurcation theory already exists.

3 Outcomes of the Meeting

This was a meeting of leading experts in applications of differential geometry to mechanics. There were a
great many informal discussions, the results of which cannot be catalogued. People who work in Geometric
Mechanics are scattered worldwide and there was a large benefit of having many of them in one place. The
scope of the discussion was terrific, and the expansive view of the area and the activity in it was of great value.
This will have affected the thinking of many of the participants. The isolation of many was diminished, and
this persisted in real ways after the workshop.

It could not have been done so well elsewhere, and perhaps not at all. The participants have a very high
opinion of BIRS. It is regarded as a high profile opportunity for meeting by people who do not choose to
attend every conference to which they are invited. In subsequent planning, BIRS is singled out as a place to
which select opportunities might be directed. The meeting directly gave rise to three other BIRS proposals.
The participants want to return to BIRS.

In modern day Science, we all should organize meetings. It might not so immediate to the minds of such
as the BIRS directors and high level supporters, but it is true and it should be stated, that not everyone is
naturally predisposed to this activity. An important effect of BIRS is to encourage faculty in its member
Universities, and elsewhere in Canada, to participate in the organization of such high level meetings. They
learn, in a supportive environment, that they really can participate in the organization of meetings, at the
highest level. BIRS is great help for the visibility of faculty who might not otherwise organize such these



activities. Such was the case for this workshop.
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