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The channel assignment problem in radio or cellular phone networks is the following : we need to
assign radio frequency bands to transmitters ( each station gets one channel which corresponds to an
integer ). In order to avoid interference, if two stations are very close, then the separation of the channels
assigned to them has to be large enough. Moreover, if two stations are close ( but not very close ), then
they must also receive channels that are sufficiently apart.

Such problem may be modelled by L(p, q)-labellings of a graph G. The vertices of this graph corre-
spond to the transmitters and two vertices are linked by an edge if they are very close. Two vertices are
then considered close if they are at distance 2 in the graph. Let dist(u, v) denote the distance between
the two vertices u and v. An L(p, q)-labelling of G is an integer assignment f to the vertex set V (G) such
that :

• |f(u) − f(v)| ≥ p, if dist(u, v) = 1, and

• |f(u) − f(v)| ≥ q, if dist(u, v) = 2.

As the separation between channels assigned to vertices at distance 2 cannot be smaller than the separa-
tion between channels assigned to vertices at distance 1, it is often assumed that p ≥ q.

The span of f is the difference between the largest and the smallest labels of f plus one. The λp,q-
number of G, denoted by λp,q(G), is the minimum span over all L(p, q)-labellings of G.

Moreover, very often, because of technical reasons or dynamicity, the set of channels available varies
from transmitter to transmitter. Therefore one has to consider the list version of L(p, q)-labellings. A
k-list-assignment L of a graph is a function which assigns to each vertex v of the graph a list L(v) of k
prescribed integers. Given a graph G, the list λp,q-number, denoted λl

p,q(G) is the smallest integer k such
that, for every k-list-assignment L of G, there exists an L(p, q)-labelling f such that f(v) ∈ L(v) for every
vertex v.

The problem of determining λp,q(G) has been studied for some specific classes of graphs ( see the
survey of Yeh [22] ). Generalizations of L(p, q)-labellings in which for each i ≥ 1, a minimum gap of pi

is required for channels assigned to vertices at distance i, have also been studied ( see for example [18]
or [16] ). Surprisingly, list L(p, q)-labellings have been studied only very litte explicitely and appear only
very recently in the literature [14]. However, some of the proofs for L(p, q)-labellings also work for list
L(p, q)-labellings.

Note that L(1, 0)-labellings of G correspond to ordinary vertex colourings of G and L(1, 1)-labelling
of G to the vertex colourings of the square of G. Hence the λ1,0-number of a graph G equals its chromatic
number χ(G), and its λl

1,0-number eqauls its choice number ch(G). The square of a graph G, denoted G2,
is the graph with vertex set V (G) such that two vertices u, v are linked by an edge in G2 if and only
if u and v are at distance at most 2 in G. Formally, E(G2) = { uv | distG(u, v) ≤ 2 }. Obviously,
L(1, 1)-labellings of G correspond to vertex colourings of G2. So λ1,1(G) = χ(G2) and λl

1,1(G) = ch(G2)
It is well known that ω(G) ≤ χ(G) ≤ ch(G) ≤ ∆(G) + 1, where ω(G) denotes the clique number

of G, i.e., the size of a maximum clique in G, and ∆(G) denotes the maximum degree of G. Similar easy
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inequalities may be obtained for L(p, q)-labellings : q ω(G2) − q + 1 ≤ λp,q(G) ≤ λl
p,q(G) ≤ p ∆(G2) + 1.

As ω(G2) ≥ ∆(G)+1, the previous inequality gives λp,q ≥ q ∆+1. However, a straightforward argument
shows that λp,q ≥ q ∆ + p − q + 1. In the same way, ∆(G2) ≤ ∆2(G) so λl

p,q(G) ≤ p ∆2(G) + 1 and the

greedy algorithm shows λl
p,q(G) ≤ (2 q−1)∆2(G)+(2 p−1)∆(G)+1. Taking a L(⌈p/k⌉ , ⌈q/k⌉)-labelling

and multiplying each label by k, we obtain a L(p, q)-labelling. This proves the following easy observation.

Proposition 1 For all graphs G and positive integers k, p, q we have

λp,q(G) ≤ k (λ⌈p/k⌉,⌈q/k⌉(G) − 1) + 1.

In general, determining the λp,q-number of a graph is NP-hard [7]. In their seminal paper, Griggs and
Yeh [9] observed that a greedy algorithm yields λ2,1(G) ≤ ∆2 + 2∆ + 1, where ∆ denotes the maximum
degree of the graph G. Moreover, they conjectured that this upper bound can be decreased to ∆2 + 1.

Conjecture 2 ([9]) For every ∆ ≥ 2 and every graph G of maximum degree ∆,

λ2,1(G) ≤ ∆2 + 1.

This upper bound would be tight: there are graphs with degree ∆, diameter 2 and ∆2+1 vertices, namely
the 5-cycle, the Petersen graph and the Hoffman-Singleton graph. Thus, their square is a clique of order
∆2 + 1, so the span of every L(2, 1)-labelling is at least ∆2 + 1.

However, such graphs exist only for ∆ = 2, 3, 7 and possibly 57, as shown by Hoffman and Single-
ton [11]. So one can ask how large may be the λ2,1-number of a graph with large maximum degree. As
it should be at least as large as the largest clique in its square, one can ask what is the largest clique
number γ(∆) of the square of a graph with maximum degree ∆. If ∆ is a prime power plus 1, then
γ(∆) ≥ ∆2 − ∆ + 1. Indeed, in the projective plane of order ∆ − 1, each point is in ∆ lines, each line
contains ∆ points, each pair of distinct points is in a line and each pair of distinct lines has a common
point. Consider the incidence graph of the projective plane: it is the bipartite graph with vertices the
set of points and lines of the projective plane, and every line is linked to all the points it contains. The
properties of the projective plane implies that the set of points and the set of lines form two cliques in
the square of this graph, and there are ∆2 − ∆ + 1 vertices in each.

Jonas [13] improved slightly on Griggs and Yeh’s upper bound by showing that every graph of maxi-
mum degree ∆ admits a (2, 1)-labelling with span at most ∆2 +2∆−3. Subsequently, Chang and Kuo [5]
provided the upper bound ∆2 + ∆ + 1 which remained the best general upper bound for about a decade.
Král’ and Škrekovski [17] brought this upper bound down by 1 as the corollary of a more general result.
And, using the algorithm of Chang and Kuo [5], Gonçalves [8] decreased this bound by 1 again, thereby
obtaining the upper bound ∆2 + ∆ − 1. Note that Conjecture 2 is true for planar graphs of maximum
degree ∆ 6= 3. For ∆ ≥ 7 it follows from a result of van den Heuvel and McGuiness [10], and Bella et
al. [3] proved it for the remaining cases.

Combining results obtained at the workshop with earlier work, Havet, Reed, and Sereini have shown
that Conjecture 2 holds for sufficiently large ∆. I.e. they prove:

Theorem 3 There is a ∆0 such that for every graph G of maximum degree ∆ ≥ ∆0,

λ2,1(G) ≤ ∆2 + 1.

This is one of the two main outcomes of the workshop, we now describe the second.

Because the transmitters are laid out on earth, L(p, q)-labellings of planar graphs are of particular interest.
There are planar graphs for which λp,q ≥ 3

2
q ∆+c(p, q), where c(p, q) is a constant depending on p and q.

For example, consider a graph consisting of three vertices x, y and z together with 3 k − 1 additonal
vertices of degree two, such that z has k common neighbours with x and k common neighbours with y,
x and y are connected and have k − 1 common neighbours ( see Figure 1 ).

This graph has maximum degree 2 k and yet its square contains a clique with 3 k + 1 vertices ( all the
vertices except z ).
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Figure 1: The planar graphs Gk.

A first upper bound on λp,q(G), for planar graphs G and positive integers p ≥ has been proved by Van
den Heuvel and McGuinness [10] : λp,q(G) ≤ 2 (2 q−1)∆+10 p+38 q−24. Molloy and Salavatipour [19]
improved this bound by showing the following :

Theorem 4 (Molloy and Salavatipour [19]) For a planar graph G and positive integers p, q,

λp,q(G) ≤ q
⌈5

3
∆

⌉

+ 18 p + 77 q − 18.

Moreover, they described an O(n2) time algorithm for finding an L(p, q)-labelling whose span is at most
the bound in their theorem.

The celebrated Four Colour Theorem by Appel and Haken [2] states that λ1,0(G) = χ(G) ≤ 4 for
planar graphs. Regarding the chromatic number of the square of a planar graph, Wegner [21] posed the
following conjecture which is mentioned in Jensen and Toft [12, Section 2.18].

Conjecture 5 (Wegner [21]) For a planar graph G of maximum degree ∆ :

λ1,1(G) = χ(G2) ≤







7, if ∆ = 3,
∆ + 5, if 4 ≤ ∆ ≤ 7,
⌈

3

2
∆

⌉

+ 1, if ∆ ≥ 8.

Wegner also gave examples showing that these bounds would be tight. For ∆ ≥ 8, these are the same
examples is in Figure 1.

Kotoschka and Woodall [15] conjectured that, for every square of a graph, the list-chromatic number
equals the choose number. This conjecture and Wegner’s one imply directly the following :

Conjecture 6 For a planar graph G of maximum degree ∆ :

λl
1,1(G) = ch(G2) ≤







7, if ∆ = 3,
∆ + 5, if 4 ≤ ∆ ≤ 7,
⌈

3

2
∆

⌉

+ 1, if ∆ ≥ 8.

Wegner also showed that if G is a planar graph with ∆ = 3, then G2 can be 8-coloured. Very recently,
Thomassen [20] solved Wegner’s conjecture for ∆ = 3 and Cranston and Kim [6] showed that the square
of every connected graph ( non necessarily planar ) which is subcubic ( i.e., with ∆ ≤ 3 ) is 8-choosable,
except for the Petersen graph. However, the 7-choosability of the square of subcubic planar graphs
is still open. The first upper bound on χ(G2) in terms of ∆ was obtained by Jonas [13] who showed
χ(G2) ≤ 8 ∆− 22. This bound was later improved by Wong [?] to χ(G2) ≤ 3 ∆+ 5 and then by Van den
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Heuvel and McGuinness [10] to χ(G2) ≤ 2 ∆ + 25. Better bounds were then obtained for large values
of ∆. It was shown that χ(G2) ≤ ⌈ 9

5
∆⌉ + 1 for ∆ ≥ 749 by Agnarsson and Halldórsson [1], and that

χ(G2) ≤ ⌈ 9

5
∆⌉ + 1 for ∆ ≥ 47 by Borodin et al. [4]. Finally, the best known upper bound before the

workshop was obtained by Molloy and Salavatipour [19] as a special case of Theorem 4 :

Theorem 7 (Molloy and Salavatipour [19]) For a planar graph G,

λ1,1(G) = χ(G2) ≤
⌈5

3
∆

⌉

+ 78.

As mentioned in [19], the constant 78 can be reduced for sufficiently large ∆. For example, it was
improved to 24 when ∆ ≥ 241.

Havet, McDiarmid, Reed, and Van Den Heuvel, combining results obtained at the workshop with
earlier results, managed to prove:

Theorem 8 The square of every planar graph G of maximum degree ∆ has list chromatic number at
most (1+o(1)) 3

2
∆. Moreover, given lists of this size, there is an acceptable colouring in which the colours

on every pair of adjacent vertices of G differ by ∆1/4.

As a corollary, for every planar graph G and any fixed p we get that λl
p,1(G) ≤ (1 + o(1)) 3

2
∆(G).

Together with Proposition 1, this yields:

Corollary 9 Let p ≥ q be two fixed integers. Then for any planar graph G we have λp,q(G) ≤ (1 +
o(1)) 3

2
q ∆(G).

Note that using exactly the same proof as for Theorem 8, one can
show that for any fixed p ≥ q, for every planar graph G, λl

p,q(G) ≤ (1 + o(1)) 3

2
(2 q − 1)∆(G).
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