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The recent workshop at BIRS offered us a fantastic opportunity for collaboration 
and focused, productive research. The workshop exceeded our expectations in 
terms of the breadth of the academic subjects we explored, and the 
collaborations we established. 
 
 
 
A subset of our group has been collaborating for several years.  We have used 
mathematical models to study the spread and evolution of influenza viruses.  The 
purpose of this workshop was to attempt reconciliation of our stochastic models 
with empirical data on influenza epidemics; to examine alternative methods of 
fitting model parameters; and to continue a collaboration with Marc Lipsitch from 
the Harvard School of Public Health.  We have progress to report on all of these 
goals.   
 
 



 
During our workshop at Banff, we completed revising a manuscript that uses 
empirical data about influenza deaths in the US over the past century to highlight 
a theoretical puzzle about influenza persistence after a pandemic.  The most 
basic, longstanding mathematical model of disease transmission divides the 
population into three classes (Susceptibles, Infectious, and Recovered/Immune 
individuals) and describes flow between these classes with a system of three 
ordinary differential equations.  Given this standard model of disease, and given 
the empirical influenza epidemic curve and infection rates observed in the United 
States in 1918, we have estimated that a very large proportion of the population 
was infected (and thereafter immune) to the Spanish Flu of 1918.  According to 
these estimates, only a very small proportion of the population remained 
susceptible to influenza after the pandemic - too small to support the initiation of 
another epidemic the following season.  But the empirical data indicate that 
another influenza epidemic did indeed occur in 1919, which raises a theoretical 
puzzle.  Our manuscript describes this enigma and offers several hypotheses for 
its resolution: the virus may have evolved to such an extent in 1918 that it could 
re-infect individuals in 1919; or the virus could have persisted in 1919 due to 
heterogeneities in the host population and "pockets" of remaining susceptibles; or 
(perhaps most intriguing) the virus may have evolved a greater ability to spread 
so that it could persist in 1919, despite the small number of susceptible hosts to 
support it.  Our manuscript does not attempt to resolve this enigma, but rather to 
describe how the puzzle arises from the combination of standard mathematical 
models and empirical data from the 1918 influenza pandemic. 
 
 
 
The second major topic we discussed in our workshop involves the non-
parametric inference of model parameters from empirical time-series data.  
Recent developments due to Wallinga and Teunis (2004) have allowed for direct 
estimates of a pathogen‚ reproductive number based only on a time-series of 
incidence counts.  Unlike parametric fitting procedures, this approach is both 
elegant and widely applicable over a range of models.  However, for pathogens 
like influenza we rarely have a time-series of infection events, but rather have 
only a time-series of death events.  We spent a large amount of our time at the 
workshop studying how to modify the method of Wallinga & Teunis to 
accommodate a death time-series, instead of an incidence time-series. 
 
 
 
One approach to this question has involved modifying the method of Wallinga & 
Teunis to deal with the distribution of times between one death event and another 
related death event. We have discovered that this approach suffers from several 
technical and one major conceptual difficulty.  The conceptual difficulty is that a 



death event on day t may been caused from a transmission event that eventually 
led to a death event on day t' > t .  As a result, this modified version of Wallinga & 
Teunis's approach involved summations over both past and future events, 
wheras the original Wallinga & Teunis method was one-sided.  This causes 
difficulty in many practical settings, and the sense in which the reproductive 
number on day t is estimated does not agree with the original Wallinga-Teunis 
method. 
 
 
 
An alternative approach is to deconvolve the observed death timeseries, using 
knowledge of the incidence-to-death transition kernel, to impute an underlying 
incidence time-series which can then be analyzed by the original Wallinga-Teunis 
technique.  In fact, we had considered this problem at a previous FRG‚ only to 
find that iteration techniques for deconvolution seemed poorly behaved.  In this 
FRG, however, we made substantial progress in deconvoluting epidemiological 
data by applying the Lucy-Richardson technique, which uses an implicitly 
Bayesian approach that guarantees positivity at every iterate.  This algorithm has 
not previously been applied to epidemiological data, and clearly has important 
epidemiological applications (recovering incidence from mortality time series, or 
infection from onset etc), but it has important limitations.  Although the algorithm 
works perfectly when data are measured without noise, applications to noisy data 
are more complicated‚ involving heuristic choices to balance the smoothness of 
the deconvolved timeseries against the accuracy of the convolution. We are 
currently writing a manuscript that describes deconvolution, its relationship to 
Wallinga & Teunis, and its applicability to questions in disease dynamic 
modeling. 
 
 


