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Scattering is the study of the interaction of waves with obstacles. These obstacles could be anything from
gratings, to tumours, to ships; the waves could be electromagnetic, elastic, or acoustic. This is a very well-
established field of study, mathematically, but only a limited number of exterior scattering problems can be
solved analytically.

In recent years, many engineers, computational scientistsand numerical analysts have investigated nu-
merical algorithms to simulate scattering, including (butnot limited to) the use of integral equations, finite
element methods, series methods, geometrical optics, absorbing layers and spectral methods. These develop-
ments have helped to make computational scattering algorithms indispensible in several industries for design
purposes. Many deep mathematical questions have also been raised as a consequence of this development.
The overarching principle and the central challenge in computational scattering is to approximate the scat-
tered wave as accurately and efficiently as possible. Indeed, one may identify the major open problems in
the field as the development of high-frequency, high-accuracy algorithms; efficient and accurate absorbing
boundary conditions; and preconditioners for discretizations of exterior scattering problems. Regardless of
the specific algorithms one may use to study scattering, these issues must be confronted head-on.

This workshop aimed to bring together experts in computational scattering with a view to cross-fertilization
and communication. The format included a few overview-style talks each day, followed by informal discus-
sion periods. These discussions were particularly important since the academics working in computational
scattering appear to be evolving a subject in seemingly parallel directions, without much interaction. The
hope was that participants would learn about other techniques being used to study exterior scattering, discuss
common issues and open problems, and hopefully form cross-discipline collaborations.

The workshop was successful in achieving many of its goals. The talks provided an exciting snapshot of
the current state-of-the-art in computational scattering. This forum provided a particularly suitable place for
students entering the field to gain an overview of the subjectarea; one of the workshop highlights was the
number of informal introductory lectures given by eminent mathematicians to the graduate students.

1 Computational scattering: basic ideas and workshop themes

Computational scattering theory is the study of algorithmsto approximate wave-obstacle interactions. The
governing equations might be the scalar wave equation (acoustic scattering), Maxwell’s equations (electro-
magnetic scattering) or nonlinear PDE such as those arisingin gravitational waves; the obstacles under study
are either bounded in space, or are akin to diffraction gratings. A typical assumption is that all nonlinearities
are compactly supported in space, allowing for simpler physics far from the obstacle. One may be interested
in the propagation of the resulting scattered wave in a waveguide or in all of space. The goal is to com-
pute approximations to this scattered wave, given information about the incident wave, the obstacle, and the
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medium of propagation. Necessarily, one must also study themathematical properties of the approximation
procedure, which in turn cannot be seperated from the PDE at the continuous level.

Frequently scattering problems are posed in a frequency-domain formulation. Looking for time-harmonic
solutions,F (x, t) = eiωtf(x), one is led to a time-independant PDE. We illustrate the ideain the context
of the frequency-domain formulation of Maxwell’s equations. LetΩ be a bounded region inR3. A perfect
conductor occupies the regionΩ. By taking the Fourier transform of Maxwell’s equations (Ampere’s law and
Faraday’s law) we are lead to the system

iωǫE(x) + curl H(x) − σE = 0, x ∈ R
N \ Ω (1)

− iωµH(x) + curl E(x) = F, x ∈ R
N \ Ω. (2)

Hereǫ andµ are respectively the permittivity and permeability of the medium, which may vary in space.
The transform variable isω, while the (rescaled) fieldsE andH correspond to the Fourier transforms of the
electric and magnetic fields, andF is a source term including information about applied current densities.
To close the system, one needs to prescribe boundary conditions on the obstacleΩ, and some conditions
at spatial infinity. The latter conditions are referred to asthe Silver-M̈uller conditions. One can eliminate
the magnetic fieldH, and rewrite the system above as a second-order problem. Since we are considering
scattering from a perfect obstacle, we can write the Silver-Muller conditions in terms ofEs, the scattered
field; the total fieldE(x) = Es(x) + Ei(x) for some prescribed incident fieldEi. We are finally lead to the
following system:

∇× (µ−1∇× E) − k2ǫE = F, x ∈ R
N \ Ω (3)

E = Ei + Es, x ∈ R
N \ Ω (4)

E × ν = 0, x ∈ ∂Ω (5)

lim
r→∞

r((∇× Es) × r̂ − iωEs) = 0, r → ∞. (6)

Even for this simple model, several observations can be made. First, unlessΩ is a very simple shape,
and the material coefficients are constant, we cannot analytically compute the fieldE(x), and must resort
to numerical simulation. Second, the fieldEs(x) occupies an infinite computational region,R

3 \ Ω. This
region must be appropriately truncated in order to allow forcomputations; any truncation strategy must be
analyzed for its effect on the accuracy of approximations. While the governing PDE has at most one solution
thanks to the Silver-Muller condition, the operator∇× (µ−1∇× ·) − k2ǫ· is not coercive; it is well-known
that in the interior of cavities, Maxwell’s equations permit resonances. Any truncation strategy must take this
possibility into account. The choice of boundary conditionone prescribes to truncate the region thus plays an
important role in the success of the numerical method. Depending on the nature of the boundary condition
employed, we refer to them as non-reflecting, absorbing, perfectly matched layers, etc. For the purpose of
this meeting we referred to such conditions collectively asartificial boundary conditions . Xavier Antoine,
Thomas Hagstrom, Eric Luneville, David Nicholls, Nilima Nigam and Sergey Sadovspoke on this topic.

Third, the wave numberk sets a length-scale called thewavelength λ ≡ 1

k . As the wave numberk
increases, this characteristic scale, becomes smaller. For instance, to accurately resolve a periodic function in
1−D, anywhere between 3-10 mesh points per wavelength are required. Now consider the scattering of a 30
Gigahertz incident wave, such as those used in high-speed microwave radio relays. This sets a length scale
at the order of millimeters. If the scattering obstacle has aradius 10 meters, with complicated geometrical
features or electromagnetic properties, one requires billions of mesh points even just to resolve the scattered
wave in a thin layer around the obstacle. A major goal is to avoid resolving such small scales while performing
computations involving large, complex obstacles; this is an extremely challenging task. Indeed, off-the-
shelf packages do not suffice in most such situations, and much work is being done in developing novel
discretization methods suited for scattering problems.Jean-Davide Benamou, Anne-Sophie Bonnet-Ben
Dhia, Oscar Bruno, Simon Chandler-Wilde, Joseph Coyle, Leszek Demkowicz, Paul Martin, Peter
Monk, Jie Shen, Symon Tsynkov and Tim Warburton spoke on the topic ofaccurate discretizations
and high-frequency calculations.

Next, since the governing PDE is not positive-definite, one should not expect any linear system arising
from a discretization process to be positive-definite. In practice one can imagine very large linear systems
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which need to be solved iteratively; the development ofpreconditioning strategieswould significantly im-
pact the size of problems one can attack.Robert Beauwens, Annalisa Buffa, Matthias Maiscak, and
Jean-Claude Nedelecdescribed recent work in the area.

Finally, the inverse problem related to this model- determining the location of the obstacle, and/or the
permittivity and permeability of the medium near the obstacle based on the observed scattered wave - is an
ill-posed problem. Since the invention of radar, scientists and engineers have striven not only to detect but
also to identify unknown objects through the use of electromagnetic waves. Any success in this direction has
potentially huge impact in application areas from medical imaging to seismic exploration. Current progress
was reported byDavid Colton, Fioralba Cakoni and George Hsiao

2 Workshop Themes, recent work and open problems

The workshop was intended to review the current state-of-the-art in computational scattering, and also to dis-
cuss future directions for the community to investigate. Tofocus the discussion, the workshop was organized
around three major themes: artificial boundary conditions,high-frequency computations, and precondition-
ing. Some recent work on inverse scattering was also discussed.

2.1 Absorbing and artificial boundary conditions

When finite difference, finite element or spectral methods are used to resolve the scattered wave near the
obstacle, the computational region must be restricted to befinite. This truncation is achieved by means of
absorbing or exact boundary conditions. These conditions can be implemented in various ways, e.g. by using
boundary integral equations, series implementations, or the perfectly matched layer of Berenger. No matter
which techniques are used, the goal is to obtain as accurate an approximation to solutions of the original
scattering problem, as efficiently as possible. Unfortunately, these are competing requirements. There are
significant implementation and/or accuracy issues which remain open problems. The construction of high-
accuracy artificial boundary conditions in the time-domainis particularly important for applications. It is,
however, a complex endeavour to balance the needs of accuracy in space and time with the requirements of
efficiency (memory and computation).

Xavier Antoine reviewed recent developments in the technique ofon-surface radiation conditions with
regards to the challenging problem of simulating high-frequency acoustic and electromagnetic scattering
problems. He also discussed the development of accurate andlocal artificial boundary conditions for smooth
geometries and the construction of well-posed and well-conditioned integral equations for the iterative solu-
tion of high-frequency scattering problems.

Thomas Hagstromreviewed the state-of-the-art in the construction, analysis, and application of arbitrarily-
accurate radiation boundary conditions for time-domain simulations. Specific topics included: (i.) Experi-
ments with nonlocal boundary conditions employing efficient compressions of the time-domain kernels; (ii.)
Reformulated local boundary condition sequences and theiruse in polygonal domains and stratified and
anisotropic media; (iii.) Speculations on potential improvements of the local boundary condition sequences
and extensions to inhomogeneous media and nonlinear problems.

In an acoustic waveguide, assumed to be semi-infinite along one propagation axis, one can easily construct
from the spectral theory of a simple transverse operator an “exact” transparent condition. More precisely,
such a condition is based on an explicit diagonalisation of the Dirichlet to Neuman operator. The situation
for Maxwell’s equations is more intricate. Indeed, the operator which associates the electrical field to its
derivative (equivalent to a Dirichlet to Neuman operator) is not implemented because the transverse and
longitudinal Maxwell operators remains coupled and no explicit diagonalisation may be performed. In a
talk by Eric Luneville , a new transparent condition in a two dimensional case for the regularized Maxwell
equations was proposed. The BC was based on the diagonalization of an operator which involves mixed
unknowns, e.g. the coupling of the electric tangential component and the divergence of the electric field, or the
coupling of electric normal component and the rotational ofthe electric field. Unfortunately, this transparent
condition requires one to deal with a mixed variational formulation where, for example, the divergence on
the transparent boundary appears as a new unknown of the problem. However, this formulation is well-posed
and its approximation by Lagrange finite elements is convergent. This approach is an alternative way to
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other methods such that integral equation or Perfectly Matched Layer techniques. It is of interest to point
out that it appears as a theoretical tool in the proof of convergence of PML techniques too. Such transverse
decompositions are also related to modal approximation. This approach may also be used for elastodynamic
problems. In that case, the spectral theory of the transverse operator is not obvious.

Boundary perturbation methods are among the most classicaltechniques for approximating scattering
returns from irregular obstacles. Despite a history which dates to Rayleigh’s calculations in the nineteenth
century, their convergence, stability, and capabilities were, for almost a century, misunderstood. The work
of Bruno & Reitich not only placed these methods on a secure theoretical foundation, but also provided fast,
high-order computational strategies. Subsequent work byDavid Nicholls has further clarified the properties
and limitations of these methods, and suggested new algorithms to achieve high-order approximations in a
rapid and numerically stable manner. Nicholls gave an overview of these boundary perturbation methods and
discussed recent enhancements.

Nilima Nigam presented some recent work on artificial boundary conditions for the scattering of elastic
waves from bounded obstacles, including extensions of the boundary perturbation approach of Bruno and
Reitich, as well as investigations into an overlapping Schwarz domain decomposition method.

The unique solvability of an exterior Dirichlet problem implies the existence of an operator that maps the
Dirichlet data (function on the obstacle boundary) to the normal derivative of the solution (another function
on the boundary). The Dirichlet-to-Neumann map thus definedis a boundary pseudodifferential operator of
order 1. In 2D problems, the boundary is one-dimensional, usually diffeomorphic to a circle, and the DtN
can be exactly (without truncation by order) described by a discrete symbol, which is a function of three
parameters: boundary parameter s, Fourier series index (discrete momentum) n, and the wavenumberk. As
k goes to infinity, the symbol has a nice asymptotic behaviour uniformly in s and n. This idea was discussed
by Sergey Sadov, who described a reformulation of this asymptotic propertyas a microlocal refinement of
the Kirchhoff approximation.

2.2 High frequency methods and novel discretization techniques

The conditioning and accuracy of most discretization techniques for scattering problems depend crucially on
the wave number of the incident wave. In addition, there are algorithms suitable for moderate frequency scat-
tering, and others appropriate for geometrical optics. A key challenge in this field remains the development
and analysis of an algorithm which works over a large range offrequencies, and whose performance can
be controlled independant of the frequency. In this workshop developments of new high-accuracy methods
suitable for a large range of wavenumbers were discussed.

The high frequency asymptotic representation of wavefields(Geometrical Optics in its simple form) is a
computationally attractive approach because the discretization is, to a large extent, independent of the fre-
quency. Unfortunately this technique has both theoreticaland practical limitations. There has been much
work in combining or coupling the usual “frequency aware” (or “full”) wavefield and “asymptotic tech-
niques”. Jean-David Benamouspoke on numerical microlocal analysis, applied to scattering problems.
While it is easy to compute a full wavefield representation from its (constructive) asymptotic representation,
the opposite extraction (or “analysis”) from a given wavefield of its frequency-independent asymptotic rep-
resentation is far from obvious. He presented a numerical method which, given an analytical or numerical
solution of the Helmholtz equation in a neighborhood of a fixed observation point, and assuming that the
geometrical optics approximation is relevant, determinesat this point the number crossing rays and computes
their directions and associated complex amplitudes.

There has been another large body of work on high-frequency methods, which are based on integral equa-
tions, high-order integration, fast Fourier transforms and highly accurate high-frequency methods. These can
be used in the solution of problems of electromagnetic and acoustic scattering by surfaces and penetrable
scatterers — even in cases in which the scatterers contain geometric singularities such as corners and edges.
The solvers exhibit high-order convergence, they run on lowmemories and reduced operation counts, and
they result in solutions with a high degree of accuracy. Theyrequire, among other tools, accurate repre-
sentations of obstacle surfaces. A new class of high-order surface representation methods was discussed by
Oscar Bruno, which allows for accurate high-order description of surfaces from a given CAD representa-
tion. These methods are employed in conjunction with a classof high-order, high-frequency methods using
integral equations which was developed recently. The talk ended with a description of a general and accu-
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rate computational methodology which is applicable and accurate for the whole range of frequencies in the
electromagnetic spectrum.

An important aspect of the numerical analysis of scatteringalgorithms is the precise dependence of their
accuracy and conditioning on the frequency. There are many open questions in this direction, some of which
have motivated the design of new algorithms.Simon Chandler-Wilde gave an overview of recent work on
boundary element methods for high frequency scattering problems. He first described what was known about
the dependence of the conditioning of boundary integral equations on frequency and on the choice of coupling
parameters in combined layer-potential formulations. He next discussed attempts to reduce the number of
degrees of freedom by incorporating some of the oscillatorybehaviour of the solution in the basis functions
used in the boundary element method. His talk contained several open problems.

Often the modeling of the complex physics involved in a scattering problem leads to mathematical chal-
lenges. Anne-Sophie Bonnet-Ben Dhiadescribed work on acoustic scattering in the presence of a mean
flow. This was work motivated by the need to develop noise-reducing technologies for planes, particularly
in the neighborhood of the airports. Unfortunately, there exists no satisfactory way to solve the Linearized
Euler Equations in the harmonic regime and in unbounded domains; a major effort in this current work in-
volves developing a well-posed model. Bonnet-Ben Dhia’s work consists in solving a linearized equation,
set on the perturbation of displacement, the so-called Galbrun’s equation. An augmented formulation of this
process was proposed, which includes a non-local (in space)term, linked to the convection of vortices along
the stream lines. This is then combined with a perfectly matched layer to truncate the region.

2.3 Finite and spectral elements

The workshop also brought together researchers who used finite element or spectral element techniques in
the study of wave propagation. Since the solutions are quiteoscillatory, the “standard” strategies are severely
limited in terms of efficiency; speakers presented novel discretization techniques which took into account the
particular behaviour of scattered waves and which ameliorated some of the difficulties which plague existing
techniques.

For scattering by complicated obstacles or in the presence of inhomogenous media, the use of nonuni-
form meshes can confer many advantages. However, the construction and implementation of hierarchic finite
element bases on unstructured tetrahedral meshes poses challenges at the computational and analytical level,
especially where a non-uniform order of approximation may be utilized. Enforcing the appropriate confor-
mity properties of the approximation across element interfaces is typically a difficult task in this case, and
recent work on this problem was presented byJoseph Coyle. He first related the problem to the intrinsic
orientation of the edges and faces as well as the global numbering of the basis functions. Observing that an
appropriate reordering of the local numbering of the vertices allows any global tetrahedron to be reduced to
one of two possible reference tetrahedra that leads the way for the construction of the hierarchic bases where
ease of implementation is not sacrificed.

The theory of hp-discretizations for Maxwell problems was reviewed byLeszek Demkowicz, who sum-
marized the main points of the projection-based interpolation theory, convergence results for Maxwell eigen-
values and recent results on the existence of polynomial preserving extension operators in H(curl) and H(div)
spaces. He then spoke on the subject of goal-oriented hp-adaptivity, presenting an extension of the original,
energy-based hp-algorithm and its applications to borehole logging EM simulations. Finally, he discussed
the impact of automatic hp-adaptivity in simulations involving the use of PML. The automatic reproduction
of “boundary layers” by the hp-adaptivity significantly reduces the tedious design and tuning of PML’s.

Although direct scattering problems in cavities and waveguides are typically linear and well-posed, they
are difficult to solve numerically because the oscillatory nature of the solution forces the use of large numbers
of degrees of freedom in the numerical method, and the resulting linear system defies standard approaches
such as multigrid. This is a particular problem at high frequencies when the scatterer spans many wavelengths.
In an effort to improve the efficiency of a volume based approach as the frequency increases and to allow the
solution of problems at widely different frequencies on a single grid,Peter Monk described his recent work
in the use of plane waves as a basis for approximating the scattered field. These are used in a discontinuous
Galerkin scheme based on a tetrahedral finite element mesh. This method is termed the Ultra Weak Variational
Formulation (UWVF) by its originators O. Cessenat and B. Despres. The use of the Perfectly Matched
Layer or Fast Multipole Method to improve the artificial boundary condition needed by the method was also
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discussed. Interestingly the linear system from the UWVF iseasier to solve than the one arising from the
finite element method, and this allows a simple parallel implementation of the method. The method has been
validated on a variety of problems, and extended to the acoustic-elastic fluid-structures problem.

The use of spectral methods in wave scattering is a very active field of research.Jie Shenpresent an
efficient and stable spectral algorithm and their numericalanalysis for the Helmholtz equation in exterior
domains. The algorithm couples a boundary perturbation technique with a well-conditioned spectral-Galerkin
solver based on an essentially exact Dirichlet-to-Neumannoperator. Error analysis as well as numerical
results were presented to show the accuracy, stability, andversatility of this algorithm.

Recent investigations of the spectral properties of the discrete Discontinuous Galerkin (DG) operators
have revealed important connections with their continuousGalerkin analogs. Theoretical and numerical
results, which demonstrate the correct asymptotic behavior of these methods and precludes spurious solu-
tions under mild assumptions, were presented byTim Warburton . Given the suitability of DG for solving
Maxwell’s equations and their ability to propagate waves over long distance, it is natural to seek effective
boundary treatments for artificial radiation boundary conditions. A new family of far field boundary condi-
tions were introduced which gracefully transmit propagating and evanescent components out of the domain.
These conditions are specifically formulated with DG discretizations in mind, however they are also relevant
for a range of numerical methods.

2.4 Special techniques

As mentioned earlier, there has been much work recently in the development of specifically tailored tech-
niques for wave scattering problems. Examples of such work include the use of asymptotic formulae derived
using classical techniques, and Huygen’s principle.

Paul A. Martin provided the first classical derivation of the Lloyd-Berry formula (published in 1967) for
the effective wavenumber of an acoustic medium filled with a sparse random array of identical small scatter-
ers. The approach clarifies the assumptions under which the Lloyd-Berry formula is valid. More precisely, an
expression for the effective wavenumber was derived, assuming the validity of Lax’s quasicrystalline approx-
imation but making no further assumptions about scatterer size. In the limit of vanishing scatterer size it was
shown that the Lloyd-Berry formula is recovered. We have also obtained a similar formula in two dimensions.
The methods employed should extend to analogous electromagnetic and elastodynamic problems.

Among the well-known challenges that arise when computing the unsteady wave fields is the deterioration
of numerical schemes over long time intervals (error buildup) and the unboundedness of the domain of defini-
tion. The latter is typical for many applications, e.g., forthe scattering problems, when the waves are radiated
toward infinity. In the literature, a standard way to deal with the first issue is to increase the order of accuracy
(quite independently, paraxial approximations can be employed), whereas the second issue requires trunca-
tion of the domain and setting of artificial boundary conditions (ABCs). According to conventional wisdom,
exact ABCs for multidimensional unsteady problems are nonlocal not only in space but also in time, and the
extent of temporal nonlocality continually increases as time elapses. It turns out, however, that in many cases
both types of difficulties can be addressed using a unified approach based on exploiting the Huygens’s princi-
ple. The propagation of waves is said to be diffusionless, and the corresponding governing PDE (or system)
is said to satisfy the Huygens principle, if the waves due to compactly supported sources have sharp aft fronts.
The areas of no disturbance behind the aft fronts are called lacunae. Diffusionless propagation of waves is
rare, whereas its opposite - diffusive propagation with after-effects is common. Nonetheless, lacunae can still
be observed in a number of important applications, including acoustics and electromagnetism. The key idea
of using lacunae for computations is that any finite size region falls behind the propagating aft front, i.e., right
into the lacuna, after a finite interval of time. In other words, any given feature of the solution will only have
a finite predetermined lifespan on any fixed domain of interest. By incorporating these considerations into a
numerical scheme, one can make its grid convergence uniformin time. The same considerations facilitate de-
sign of exact unsteady ABCs with only fixed and limited (non-increasing) extent of temporal nonlocality. At
the workshop,Symon Tsynkovdescribed recent progress made in constructing the lacunae-based numerical
schemes for the d’Alembert equation, as well as for the linearized Euler equations and the Maxwell equations.
He also discussed different physical models from the standpoint of existence of the lacunae and showed in
some interesting cases that are technically speaking diffusive, e.g., the propagation of electromagnetic waves
in dilute plasma, lacunae can still be identified in the solutions in some approximate sense.
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2.5 Preconditioning strategies

The efficient solution of the linear systems obtained as a consequence of the discretization of exterior scatter-
ing problems is an open problem, since these systems are typically dense. Canned preconditioning techniques
have been rather unsuccessful. Part of the difficulty in the preconditioning of frequency-domain problems lies
in the indefinite natue of the associated linear systems.Robert Beuwensgave an overview of the principles
behind complex iterative schemes, used to solve large sparse linear systems of equations. He discussed two
kinds of methods, which are often used in combination: preconditioning methods and convergence accelera-
tion methods. Preconditioning methods aim at building an approximate system close to the one to be solved
but which is inexpensive to solve both in terms of computing time and memory requirements. Convergence
acceleration methods are used to transform slowly converging sequences or even diverging sequences into
rapidly converging sequences. Acceleration techniques popular today include the polynomial acceleration or
Krylov subspace methods as basic blocks in the building of elaborate preconditioners. The talk concluded
with recent developments concerning multi- level and recursive ordering methods on the one hand and the
parallelization of preconditioned Krylov subspace methods on the other hand.

Preconditioning techniques have recently been developed for boundary integral equations used in this
context; there is a pressing need for a systematic preconditioning strategy for other algorithms as well. The
use of Calderon projections in the study of integral equations suggests the use of operator-level precondition-
ers, where the continuous problem is preconditioned by application of suitable pseudo-differential operators.
Discretization is performed only after this preconditioning. The electric field integral equation (EFIE) arises
in the scattering theory for harmonic electromagnetic waves. Annalisa Buffa described an optimal precon-
ditioning technique for the conforming Galerkin approximation of the EFIE via Raviart-Thomas finite ele-
ments. At the continuous level, Calderon formulas provide an explicit representation of the inverse operator
of the electric field integral operator up to compact pertubations. A stable discretization of the Calderon for-
mula was presented, and then an optimal preconditioner for the linear system which arises from the Galerkin
discretization of the EFIE was shown.

Jean-Claude Nedelecalso spoke on preconditioning the Maxwell integral equations using Calderon iden-
tities

Starting from the well known combined boundary integral formulations due to Brakhage/Werner and
Burton/Miller Olaf Steinbach reviewed existing modifications which are needed for the numerical analysis
in the correct function spaces. While most of the proposed modifications rely on a compactness argument,
the current work involved an alternative approach, which leads to a stable approximation scheme.

The symmetric coupling of finite elements and boundary elements for electromagnetic problems results
in highly ill-conditioned linear systems of equations.Matthias Maischak presented a block-preconditioner
for the GMRES method which is based on domain decomposition methods applied to the “FEM-part” and
the “BEM-part” separately and analysed the eigenvalue distribution of the preconditioned system. It was
shown that the efficiency of this method only depends on the ratio of coarse grid mesh size and the overlap.
Numerical examples for the eddy-current problem underlinethe efficiency of this method.

2.6 Inverse problems

While describing important applications of scattering theory, one is naturally lead to consider inverse prob-
lems. Important inverse problems include the reconstruction of biologically relevant information from med-
ical tomography data, the location of hydrocarbons based onseismic imaging information, and the detection
of mines. Mathematically, inverse problems in scattering pose severe challenges due to their ill-posed nature.

Fioralba Cakoni spoke on mathematical and computational aspects of inverseElectromagnetic Scat-
tering Problems, specifically as it pertains to synthetic aperture radar (SAR). SAR suffers from limitations
arising from the incorrect model assumptions which ignore both multiple scattering and polarization effects.
The main theme of this talk was the use of a qualitative method, the linear sampling method, to solve inverse
electromagnetic scattering problems. Cakoni first introduced the main mathematical ideas of the linear sam-
pling method for the simple case of electromagnetic scattering by a perfect conductor. She next showed how
to use the technique to find both the shape and the surface impedance of a partially coated perfect conductor
without knowing a priori whether the obstacle is coated. In the case of an inhomogeneous background, she
presented a new method which avoids the need to compute the Green’s function of the background media.
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Numerical examples showed the validity of this approach.
Some recent developments in inverse scattering were described byDavid Colton, who also discussed a

major open problem in the field.
Scattering theory in periodic structures has many applications in micro-optics. The treatment of the in-

verse problem, recovering the periodic structure or the shape of the grating profile from the scattered field,
is useful in quality control and design of diffractive elements with prescribed far field patterns.George
Hsiao discussed an inverse diffraction grating problem to recover a two-dimensional periodic structure from
scattered waves measured from above and below the structure. The problem was reformulated as an optimiza-
tion problem including regularization terms. The solutionis obtained as the minimizer of the optimization
problem, where the objective function consists of three terms: the residual of the Helmholtz equation, the
deviation of the computed Rayleigh coefficients from the measured data, and the regularization term to cope
with the ill-posedness of the inverse problem. He then described solvability and parameter sensitivity of the
algorithm, and showed some numerical experiments validating the approach.

3 Presentation Highlights

The workshop brought together experts in a variety of computational techniques, with a focus on exterior
scattering problems. In addition, graduate students and postdoctoral fellows were invited, to establish con-
nections with established mathematicians. To optimize research interaction, several different activities were
planned:

• 30 minute lectures by experts

• Poster presentations by graduate students and postdocs: the posters were on display for the duration of
the workshop in the coffee room area. Since this area was heavily utilized during breaks, the students
and postdocs got several opportunities to discuss their work with other mathematicians. We actually
recommend this format for poster sessions for future workshops; the younger mathematicians were
very appreciative of the extended opportunity to showcase their research.

• Two panel discussions: At the end of Day 2 and Day 4 of the workshop, panel discussions were held on
integral equation methods and finite element methods respectively. These lively discussions included
presentations of open problems, discussions of key challenges and suggestions for future research.

• Informal lectures: several expert mathematicians volunteered to give informal lectures to the graduate
students. Particularly given the range of mathematical expertise at the workshop, this was a very
valuable opportunity for the students.

3.1 Poster presentations

• Binford, Tommy (Rice University)
Title: Experiments with a Dirichlet to Neumann Map for High Order Finite Elements
For electromagnetic scattering problems, the number of degrees of freedom to acheive a desired accu-
racy can be prohibitively large depending on the domain. Artificial boundary methods are a powerful
tool for treating radiation conditions while preserving the physical behavior with fewer degrees of free-
dom. Work by Nicholls & Nigam on Dirichlet to Neumann maps hasprovided a method of handling
the radiation condition for perturbed simple geometries such as a circular boundary. In this poster,
Binford showed experiments where one applies a high order finite element method in conjunction with
a Dirichlet to Neuman map to solve Helmholtz’ equation for a right circular cylindrical scatterer with
different perturbations of a circular artificial boundary away from the scattering object.

• Ecevit, Fatih (Max Planck Institute)
Title: High-frequency asymptotics and convergence of multiple-scattering iterations in two-dimensional
scattering problems
One of the main difficulties in high-frequency electromagnetic and acoustic scattering simulations is
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that any numerical scheme based on the full-wave model entails the resolution of the smallest wave-
length. It is due to this challange that simulations involving even very simple geometries are beyond
the reach of classical numerical schemes. Ecevit presentedan analysis of a recently proposed integral
equation method for the solution of high-frequency electromagnetic and acoustic scattering problems
that deliverserror-controllable solutions in frequency-independent computational times. Within single
scattering configurations the method is based on the use of anappropriate ansatz for the unknown sur-
face densities and on suitable extensions of the method of stationary phase. The extension to multiple-
scattering configurations, in turn, is attained through consideration of an iterative (Neumann) series
that successively accounts for multiple reflections. Here we derive a high-frequency asymptotic expan-
sion of the successively induced currents in this latter procedure and, within this context, we derive an
estimate for its convergence rate. As we show, this rate is explicitly computable and it depends solely
on geometrical characteristics; in particular, it is independent of the specific incidence of radiation. Nu-
merical results confirm the accuracy of this high-frequencyestimate for the case of several interacting
structures.

• Han, Young-Ae (Caltech)
Title: A Continuation Method for high-order parametrization of arbitrary surfaces
In this poster, a super-algebraically convergent technique to approximate complicated surfaces in 3-D
using locally smooth functions was presented. The method accurately renders geometric singularities
such as edges and corners. The approach was based on continuing each smooth branch of a piecewise-
smooth function into a new function which, defined on a largerdomain, is both smooth and periodic.
These “continuation functions” have Fourier coefficients that decay super-algebraically, and thus result
in high-order approximations of the given function throughout its domain of definition. Among other
benefits, this approach resolves the Gibbs phenomenon. Examples showing the success of this strategy
were also shown.

• Kurtz, Jason (U. Texas at Austin )
Title: Fully-Automatic hp-Adaptivity for Acoustic and Electromagnetic Scattering in 3D
Two popular strategies for studying exterior scattering problems are coupled FEM-PML or FEM-
Infinite element methods. This work describes an adaptive hprefinement algorithm for both strategies
which yields exponential convergence in the energy norm. The hp-adaptive method is ideally suited
for scatterers with geometric singularities and/or for discretizations truncated by a perfectly matched
layer. Three crucial implementation issues were addressedin the poster: namely, fast integration of el-
ement stiffness matrices, a domain-decomposition multi-frontal solver, and a “telescoping” solver for
a sequence of locally nested meshes. Computational resultswere presented for both PML and infinite
element truncations.

• Sifuentes, Josef(Rice University)
Title: GMRES performance in integral equation methods for scattering by inhomogeneous media Dis-
cretizations of integral equation techniques lead to linear systems which are solved iteratively (typi-
cally using GMRES). The number of iterations increases considerably with wave number.The poster
described recent investigations into the wave-number dependence of the spectrum of the discretized
integral operator. This line of research will eventually lead to better preconditioning strategies.

4 Open problems and future directions

One of the big successes of this workshop was due to the scientific generosity of the participants, who not
only provided clear expositions on their work, but also detailed open problems and future directions they
believed to be of significance. Some of these were reiteratedduring the two panel discussions (summarized
below) and informal talks.

Over the course of the workshop, the participants identifiedsome major directions for future research.
Problems which need theoretical and analytical work include careful investigations into wave-number de-
pendent error analysis of existing algorithms, and preconditioning strategies. At the computational level, the
community felt the need to develop benchmark problems to test algorithms, and demonstrate the effectiveness
of computational strategies on scattering from complex structures and physics.
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Another concern which was shared was the overwhelming effort required in meshing complex geome-
tries. It is estimated that of the total time spent on studying scattering problems in an engineering context,
developers spend around 80% of their time on describing the geometry and implementing meshes, and only
20% on the actual simulation. While no consensus emerged on how best to deal with this problem, it became
clear that for newer algorithms to become widely applicable, they had to account for this bottleneck.

To get a full flavour of the range of open problems suggested, we encourage the interested reader to look
at the website:

http://www.math.mcgill.ca/nigam/BANFF/front.php

This website contains many of the talks, and links to participant websites and papers.

4.1 Integral equation techniques

• It is well-known that most numerical methods for scatteringproblems require a mesh which can resolve
the incident wave. This means, in particular, that the size of the mesh grows with the wave number
k. However, in some situations this may not be necessary. For example, the scattering of a high
frequency wave off a convex smooth obstacle should not require such high numerical resolution. An
open problem is to characterise the scattering problems forwhich O(1) discretizations are possible as
k → ∞. Does the convexity of the scattering object play an important role, is smoothness of material
properties crucial?

• Integral equation techniques rely on the fast and accurate quadrature of oscillatory kernels. This poses
interesting problems in the theory of quadrature, not just restricted to scattering. For example, how
should one deal with oscillatory integrals, particularly in complex 3-D geometries, in O(1) computa-
tional time, without sacrificing accuracy?

• A major open area of investigation remains the hunt for good preconditioners in the twin limit as mesh
sizeh → 0 and wave numberk → ∞.

• Geometrical optics is a powerful tool for studying very highfrequency scattering. While developing
numerical algorithms suitable for a range of frequencies, it would be desirable to incorporate ideas
from geometrical optics to deal with the high frequency range. An application would be, for example,
acoustic muffling problems, where an integral equation solver may be appropriate for the object, and
geometrical optics suffices to capture the large-scale and atmospheric effects.

• An important open area in the numerical analysis of scattering algorithms concerns estimates (above
and below) of condition numbers for integral equations for general objects. Some results are known on
simple geometries, but these need to be extended.

• A specific question in the numerical analysis of integral equation techniques is whether the Galerkin
method is stable for classical Brakhage-Werner integral equations on Lipschitz domains.

• The error analysis of the classical Brakhage-Werner integral predicts a condition number which grows
asO(k1/3) ask → ∞. This is not reflected in actual computations for a large class of scatterers. Why?

• There exist a profusion of algorithms for scattering, suitable in certain specific frequency regimes.
The workshop participants agreed that a key goal is to establish stability for any numerical method
uniformly in wave numberk.

• Much is known about the physics of wave propagation and interaction in anisotropic and inhomogenous
materials. Rather than look for a preconditionerab initio, a fruitful direction of research would involve
using knowledge of the physics to design optimal preconditioners.

• While describing a scattering problem in terms of integral equations, one has several choices. Some
integral equation formulations are more suitable for computation than others; exploiting this requires a
detailed understanding of the spectral properties of various integral equations.
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• A valuable contribution from the community would be a set of non-trivial computational examples,
showing the efficacy of integral equation based methods. At present, open-source software for bound-
ary integral equations is not as well-developed as it’s finite element analog.

• There are some situations where integral equation methods are both natural and more efficient than
volumetric discretizations. An important project would beto classify the problems on which one
should use integral equation methods.

• Domain decomposition methods are powerful tools which enable parallelization of computation, par-
ticularly for large obstacles. Communication between domains occurs via Stekhlov-Poincaré maps,
which are accurately described in terms of integral operators. More investigation is needed into opti-
mal combinations of integral equation methods and domain decomposition techniques.

• The use of integral equations of the second kind to solve exterior scattering problems is popular, in par-
ticular since the integral operators involved are not singular. Standard boundary element techniques do
not always seek approximations in the correct Sobolev spaces. Indeed, integral equation techniques are
quite versatile, and performing discretizations appropriately will allow for a wider range of problems
to be solved.

• Integral equation methods lead to dense matrices; a lot of attention has been paid recently to operator-
level preconditioning to improve the computational efficiency of these methods. Calderon projections
offer many possibilities in terms of reformulations of integral equations; these need to be further ex-
amined for their computational suitability. Upon preconditioning with these projections, an integral
equation of formBx = F can be transformed to one of type

ABx = (I − K)x = AF.

A closer theoretical investigation of the compact operatorK is required for various projection methods.
In particular, what is the behaviour of these projections atthe discrete level, in the presence of meshes
with high aspect ratios?

• At the discrete level, both storage and efficient computation of the linear systems arising from integral
equation methods poses challenges. One fruitful directionof work which needs more development is
the use of algebraic approximation methods and hierarchical matrices in this context. It is, for example,
not obvious how one should precondition a system arising from the use of an adaptive mesh.

4.2 Volumetric discretization techniques and artificial boundary conditions

• Multigrid techniques for scattering require that the coarsest grid resolve the wavelength of the incident
wave. This is too severe a restriction for this method to be practical at high frequencies; a variant of a
multilevel technique which is genuinely independent of frequency is required. Similarly, while domain
decomposition techniques are gaining popularity, the dependence of their performance on wavenumber
is not clearly described.

• Scattering problems which involve wires or thin structuresare notoriously difficult to solve, but ap-
plications involving wires and antennae are very important. For example, one may wish to study the
electromagnetic fields inside the fuselage and body of an airplane, with the goal of reducing it’s sig-
nature. In such applications, actually meshing to the levelof the wire, while simultaneously capturing
the large-scale object, will require either an extremely large mesh or a highly graded one. Existing al-
gorithms need to be tested against benchmark problems involving wires, and we need to develop other
algorithms if required.

• Plane-wave time-domain discretization techniques are gaining popularity. Here, one approximates the
scattered field using plane wave basis functions. These algorithms need to be rigorously analysed for
their convergence and stability properties. It has alreadybeen noticed that plane-wave techniques can
be cheaper and more accurate than methods reliant on trigonometric or polynomial basis functions,
provided one has some a priori knowledge of the direction of the wave to be approximated. The use of
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other special basis functions, to enable high-order calculations in an inexpensive fashion, also needs to
be further investigated.

• In practice, the description of obstacle shapes or the incident wave requires the use of stochastic param-
eters and shapes. Few high-order methods currently exist for studying stochastic scattering problems;
this field provides a wealth of open problems.

• As for the study of Integral Equation based methods, the error analysis of volumetric algorithms rarely
includes explicit dependence on the frequency for quantities of interest. A major theoretical undertak-
ing would be to develop tools to evaluate the dependence uponthe frequency.

• Volumetric solvers, when coupled with appropriate boundary conditions, can lead to essentially sparse
systems, which unfortunately are not positive-definite. A major open problem remains the construction
of efficient solution techniques at the discrete level, perhaps using low-frequency or elliptic problems
as preconditioners.

• Current convergence and stability results on vector-type finite element techniques for scattering do
not extend to highly anisotropic meshes or materials. Sincehigh-contrast and strongly anisotropic
materials occur in practice, a careful study of numerical methods in this context is required. Indeed,
effectivea posteriori error estimates are not available, making adaptive meshes difficult to implement.

• An interesting question arises in the study of electromagnetic scattering: since the solutions of Maxwell’s
equation obey the Gauss, Ampere and Faraday laws. Should finite element approximations obey these
at the element level? Is there any room for “fully compatiblediscretization” of electromagnetic waves?

• hp-adaptive finite element techniques can be very efficient,particularly when the scatterer or the
medium has several scales, near-singular geometric features, or strong anisotropies. A rigorous er-
ror analysis of such methods for a variety of scattering problems remains an open challenge.

• The perfectly matched layer of Berenger has been very successful in certain contexts. Is there a stable
PML for all symmetric hyperbolic systems? What about the PMLfor anisotropic elastic scattering: Is
it stable?

• Exact boundary conditions are exact implementations of theStekhlov-Poincaŕe maps on a truncating
boundary. Is there a purely local (in space and time) exact boundary condition for the wave equation in
the time domain?

This list of open problems by no means exhausts the issues brought up during the workshop; several
more technical questions were presented in the actual talksand posters, for which we refer the reader to the
associated website.
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