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Scattering is the study of the interaction of waves with ablets. These obstacles could be anything from
gratings, to tumours, to ships; the waves could be electyoetic, elastic, or acoustic. This is a very well-
established field of study, mathematically, but only a ledinumber of exterior scattering problems can be
solved analytically.

In recent years, many engineers, computational sciergiglsnumerical analysts have investigated nu-
merical algorithms to simulate scattering, including (bat limited to) the use of integral equations, finite
element methods, series methods, geometrical opticstlabgdayers and spectral methods. These develop-
ments have helped to make computational scattering ahgesiindispensible in several industries for design
purposes. Many deep mathematical questions have also @ised as a consequence of this development.
The overarching principle and the central challenge in agiaipnal scattering is to approximate the scat-
tered wave as accurately and efficiently as possible. Indaesl may identify the major open problems in
the field as the development of high-frequency, high-aayuedgorithms; efficient and accurate absorbing
boundary conditions; and preconditioners for discreiizes of exterior scattering problems. Regardless of
the specific algorithms one may use to study scatteringetisssies must be confronted head-on.

This workshop aimed to bring together experts in computatiscattering with a view to cross-fertilization
and communication. The format included a few overviewestglks each day, followed by informal discus-
sion periods. These discussions were particularly impogance the academics working in computational
scattering appear to be evolving a subject in seeminglyllpadirections, without much interaction. The
hope was that participants would learn about other teclesitpeing used to study exterior scattering, discuss
common issues and open problems, and hopefully form crissgptine collaborations.

The workshop was successful in achieving many of its godis. télks provided an exciting snapshot of
the current state-of-the-art in computational scatterifigs forum provided a particularly suitable place for
students entering the field to gain an overview of the sulgeed; one of the workshop highlights was the
number of informal introductory lectures given by eminemtthematicians to the graduate students.

1 Computational scattering: basic ideas and workshop thens

Computational scattering theory is the study of algorithmapproximate wave-obstacle interactions. The
governing equations might be the scalar wave equation §dicoscattering), Maxwell’'s equations (electro-
magnetic scattering) or nonlinear PDE such as those ailiisiggvitational waves; the obstacles under study
are either bounded in space, or are akin to diffraction ggati A typical assumption is that all nonlinearities
are compactly supported in space, allowing for simpler sy&r from the obstacle. One may be interested
in the propagation of the resulting scattered wave in a waidegor in all of space. The goal is to com-
pute approximations to this scattered wave, given infoienabout the incident wave, the obstacle, and the



medium of propagation. Necessarily, one must also studynttbematical properties of the approximation
procedure, which in turn cannot be seperated from the PDiieatdntinuous level.

Frequently scattering problems are posed in a frequenoyadoformulation. Looking for time-harmonic
solutions,F(z,t) = ™! f(z), one is led to a time-independant PDE. We illustrate the idethe context
of the frequency-domain formulation of Maxwell’s equasor_et() be a bounded region iR3. A perfect
conductor occupies the regiéh By taking the Fourier transform of Maxwell’'s equations (pene’s law and
Faraday's law) we are lead to the system

iweE(z) + curl H(x) — o E = 0, reRV\Q )
—iwpH (x) + curl E(z) = F, zeRY\ Q. 2

Heree and . are respectively the permittivity and permeability of thedium, which may vary in space.
The transform variable is, while the (rescaled) field& and H correspond to the Fourier transforms of the
electric and magnetic fields, arfd is a source term including information about applied curdsmsities.
To close the system, one needs to prescribe boundary comlitin the obstacl®, and some conditions
at spatial infinity. The latter conditions are referred talas Silver-Miller conditions. One can eliminate
the magnetic field?, and rewrite the system above as a second-order problense $ie are considering
scattering from a perfect obstacle, we can write the SilaHer conditions in terms of*, the scattered
field; the total fieldE(z) = E*(z) + E*(x) for some prescribed incident fiekd’. We are finally lead to the
following system:

Vx (u 'V xE)—-Ek*E =F, reRV\Q (3)
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Even for this simple model, several observations can be mBitst, unlesq? is a very simple shape,
and the material coefficients are constant, we cannot acallytcompute the fieldZ(z), and must resort
to numerical simulation. Second, the figlt (z) occupies an infinite computational regidk? \ Q. This
region must be appropriately truncated in order to allowdmmputations; any truncation strategy must be
analyzed for its effect on the accuracy of approximationgilgthe governing PDE has at most one solution
thanks to the Silver-Muller condition, the opera®r< (1 ~1V x -) — k%e- is not coercive; it is well-known
that in the interior of cavities, Maxwell's equations perngisonances. Any truncation strategy must take this
possibility into account. The choice of boundary conditime prescribes to truncate the region thus plays an
important role in the success of the numerical method. Ddipgron the nature of the boundary condition
employed, we refer to them as non-reflecting, absorbingeptty matched layers, etc. For the purpose of
this meeting we referred to such conditions collectivelp@dsicial boundary conditions. Xavier Antoine,
Thomas Hagstrom, Eric Luneville, David Nicholls, Nilima Nigam and Sergey Sadogpoke on this topic.

Third, the wave numbek sets a length-scale called tivavelength A = % As the wave numbek
increases, this characteristic scale, becomes smalleingtance, to accurately resolve a periodic function in
1— D, anywhere between 3-10 mesh points per wavelength areegiqiNow consider the scattering of a 30
Gigahertz incident wave, such as those used in high-spegdwave radio relays. This sets a length scale
at the order of millimeters. If the scattering obstacle haadius 10 meters, with complicated geometrical
features or electromagnetic properties, one requirestllof mesh points even just to resolve the scattered
wave in a thin layer around the obstacle. A major goal is tadhresolving such small scales while performing
computations involving large, complex obstacles; thisrisegtremely challenging task. Indeed, off-the-
shelf packages do not suffice in most such situations, andhmack is being done in developing novel
discretization methods suited for scattering probledean-Davide Benamou, Anne-Sophie Bonnet-Ben
Dhia, Oscar Bruno, Simon Chandler-Wilde, Joseph Coyle, Lexek Demkowicz, Paul Martin, Peter
Monk, Jie Shen, Symon Tsynkov and Tim Warburton spoke on the topic oficcurate discretizations
and high-frequency calculations

Next, since the governing PDE is not positive-definite, dmeusd not expect any linear system arising
from a discretization process to be positive-definite. lacfice one can imagine very large linear systems



which need to be solved iteratively; the developmenpreiconditioning strategieswould significantly im-
pact the size of problems one can attadkobert Beauwens, Annalisa Buffa, Matthias Maiscak, and
Jean-Claude Nedeledescribed recent work in the area.

Finally, the inverse problem related to this model- deteing the location of the obstacle, and/or the
permittivity and permeability of the medium near the obktdmsed on the observed scattered wave - is an
ill-posed problem. Since the invention of radar, scieatéstd engineers have striven not only to detect but
also to identify unknown objects through the use of elecagnetic waves. Any success in this direction has
potentially huge impact in application areas from medio@ging to seismic exploration. Current progress
was reported byavid Colton, Fioralba Cakoni and George Hsiao

2 Workshop Themes, recent work and open problems

The workshop was intended to review the current state-®fatthin computational scattering, and also to dis-
cuss future directions for the community to investigatefos the discussion, the workshop was organized
around three major themes: artificial boundary condititwgh-frequency computations, and precondition-
ing. Some recent work on inverse scattering was also disduss

2.1 Absorbing and artificial boundary conditions

When finite difference, finite element or spectral methodswaed to resolve the scattered wave near the
obstacle, the computational region must be restricted tinite. This truncation is achieved by means of
absorbing or exact boundary conditions. These conditiande implemented in various ways, e.g. by using
boundary integral equations, series implementationh@perfectly matched layer of Berenger. No matter
which techniques are used, the goal is to obtain as accunadg@@roximation to solutions of the original
scattering problem, as efficiently as possible. Unfortelyathese are competing requirements. There are
significant implementation and/or accuracy issues whiahaia open problems. The construction of high-
accuracy artificial boundary conditions in the time-domigiparticularly important for applications. It is,
however, a complex endeavour to balance the needs of agdarapace and time with the requirements of
efficiency (memory and computation).

Xavier Antoine reviewed recent developments in the techniquerséurface radiation conditions with
regards to the challenging problem of simulating high-fiexacy acoustic and electromagnetic scattering
problems. He also discussed the development of accurateeaidartificial boundary conditions for smooth
geometries and the construction of well-posed and wellitimmed integral equations for the iterative solu-
tion of high-frequency scattering problems.

Thomas Hagstromreviewed the state-of-the-art in the construction, anglysd application of arbitrarily-
accurate radiation boundary conditions for time-domamutations. Specific topics included: (i.) Experi-
ments with nonlocal boundary conditions employing effitigmmpressions of the time-domain kernels; (ii.)
Reformulated local boundary condition sequences and thegirin polygonal domains and stratified and
anisotropic media; (iii.) Speculations on potential imggments of the local boundary condition sequences
and extensions to inhomogeneous media and nonlinear pneble

In an acoustic waveguide, assumed to be semi-infinite aloagpopagation axis, one can easily construct
from the spectral theory of a simple transverse operatoreanct” transparent condition. More precisely,
such a condition is based on an explicit diagonalisatiorheflirichlet to Neuman operator. The situation
for Maxwell's equations is more intricate. Indeed, the @per which associates the electrical field to its
derivative (equivalent to a Dirichlet to Neuman operaternot implemented because the transverse and
longitudinal Maxwell operators remains coupled and no iekplliagonalisation may be performed. In a
talk by Eric Luneville, a new transparent condition in a two dimensional case ®rélgularized Maxwell
equations was proposed. The BC was based on the diagomalizditan operator which involves mixed
unknowns, e.g. the coupling of the electric tangential congmt and the divergence of the electric field, or the
coupling of electric normal component and the rotationahefelectric field. Unfortunately, this transparent
condition requires one to deal with a mixed variational folation where, for example, the divergence on
the transparent boundary appears as a new unknown of thieproHowever, this formulation is well-posed
and its approximation by Lagrange finite elements is coremtrg This approach is an alternative way to



other methods such that integral equation or Perfectly Matd_ayer techniques. It is of interest to point
out that it appears as a theoretical tool in the proof of cagesece of PML techniques too. Such transverse
decompositions are also related to modal approximatiors djpproach may also be used for elastodynamic
problems. In that case, the spectral theory of the tranevmgsrator is not obvious.

Boundary perturbation methods are among the most clagsicahiques for approximating scattering
returns from irregular obstacles. Despite a history whiated to Rayleigh’s calculations in the nineteenth
century, their convergence, stability, and capabilitiesay for almost a century, misunderstood. The work
of Bruno & Reitich not only placed these methods on a secwerdiical foundation, but also provided fast,
high-order computational strategies. Subsequent woiRdd Nicholls has further clarified the properties
and limitations of these methods, and suggested new digwito achieve high-order approximations in a
rapid and numerically stable manner. Nicholls gave an ageroef these boundary perturbation methods and
discussed recent enhancements.

Nilima Nigam presented some recent work on artificial boundary conditfonthe scattering of elastic
waves from bounded obstacles, including extensions of thmdbary perturbation approach of Bruno and
Reitich, as well as investigations into an overlapping Samtavdomain decomposition method.

The unique solvability of an exterior Dirichlet problem iligs the existence of an operator that maps the
Dirichlet data (function on the obstacle boundary) to themrad derivative of the solution (another function
on the boundary). The Dirichlet-to-Neumann map thus defis@dboundary pseudodifferential operator of
order 1. In 2D problems, the boundary is one-dimensionalallys diffeomorphic to a circle, and the DtN
can be exactly (without truncation by order) described bysardte symbol, which is a function of three
parameters: boundary parameter s, Fourier series indgorétlt momentum) n, and the wavenumbeAs
k goes to infinity, the symbol has a nice asymptotic behavioifotmly in s and n. This idea was discussed
by Sergey Sadoywho described a reformulation of this asymptotic propasya microlocal refinement of
the Kirchhoff approximation.

2.2 High frequency methods and novel discretization techgques

The conditioning and accuracy of most discretization tépls for scattering problems depend crucially on
the wave number of the incident wave. In addition, there lyerghms suitable for moderate frequency scat-
tering, and others appropriate for geometrical optics. A dtgallenge in this field remains the development
and analysis of an algorithm which works over a large rang&eafuencies, and whose performance can
be controlled independant of the frequency. In this workstievelopments of new high-accuracy methods
suitable for a large range of wavenumbers were discussed.

The high frequency asymptotic representation of wavefi@isometrical Optics in its simple form) is a
computationally attractive approach because the digett@n is, to a large extent, independent of the fre-
guency. Unfortunately this technique has both theoretical practical limitations. There has been much
work in combining or coupling the usual “frequency awaref {full”) wavefield and “asymptotic tech-
nigues”. Jean-David Benamouspoke on numerical microlocal analysis, applied to sdatjeproblems.
While it is easy to compute a full wavefield representati@mfiits (constructive) asymptotic representation,
the opposite extraction (or “analysis”) from a given waueffief its frequency-independent asymptotic rep-
resentation is far from obvious. He presented a numeric#th@dewhich, given an analytical or numerical
solution of the Helmholtz equation in a neighborhood of adixdservation point, and assuming that the
geometrical optics approximation is relevant, determatekis point the number crossing rays and computes
their directions and associated complex amplitudes.

There has been another large body of work on high-frequerthiads, which are based on integral equa-
tions, high-order integration, fast Fourier transformd highly accurate high-frequency methods. These can
be used in the solution of problems of electromagnetic amdigtic scattering by surfaces and penetrable
scatterers — even in cases in which the scatterers contamegec singularities such as corners and edges.
The solvers exhibit high-order convergence, they run ondmemories and reduced operation counts, and
they result in solutions with a high degree of accuracy. Tiregire, among other tools, accurate repre-
sentations of obstacle surfaces. A new class of high-omuiaice representation methods was discussed by
Oscar Bruno, which allows for accurate high-order description of sceffrom a given CAD representa-
tion. These methods are employed in conjunction with a aéssgh-order, high-frequency methods using
integral equations which was developed recently. The tatled with a description of a general and accu-



rate computational methodology which is applicable andisate for the whole range of frequencies in the
electromagnetic spectrum.

An important aspect of the numerical analysis of scatteaiggrithms is the precise dependence of their
accuracy and conditioning on the frequency. There are mpag questions in this direction, some of which
have motivated the design of new algorithn@mon Chandler-Wilde gave an overview of recent work on
boundary element methods for high frequency scatteringlenos. He first described what was known about
the dependence of the conditioning of boundary integrahigns on frequency and on the choice of coupling
parameters in combined layer-potential formulations. ket miscussed attempts to reduce the number of
degrees of freedom by incorporating some of the oscillabetyaviour of the solution in the basis functions
used in the boundary element method. His talk containedalewpen problems.

Often the modeling of the complex physics involved in a scaty problem leads to mathematical chal-
lenges. Anne-Sophie Bonnet-Ben Dhiadescribed work on acoustic scattering in the presence ofamnme
flow. This was work motivated by the need to develop noisetcet) technologies for planes, particularly
in the neighborhood of the airports. Unfortunately, thetists no satisfactory way to solve the Linearized
Euler Equations in the harmonic regime and in unbounded @@na major effort in this current work in-
volves developing a well-posed model. Bonnet-Ben Dhia'skwamnsists in solving a linearized equation,
set on the perturbation of displacement, the so-calledrGat¥pequation. An augmented formulation of this
process was proposed, which includes a non-local (in spewe) linked to the convection of vortices along
the stream lines. This is then combined with a perfectly maddayer to truncate the region.

2.3 Finite and spectral elements

The workshop also brought together researchers who uséel éil@ment or spectral element techniques in
the study of wave propagation. Since the solutions are gsitélatory, the “standard” strategies are severely
limited in terms of efficiency; speakers presented novalrdiization techniques which took into account the
particular behaviour of scattered waves and which ame&draome of the difficulties which plague existing
techniques.

For scattering by complicated obstacles or in the presehaghomogenous media, the use of nonuni-
form meshes can confer many advantages. However, the gotistrand implementation of hierarchic finite
element bases on unstructured tetrahedral meshes podlesgés at the computational and analytical level,
especially where a non-uniform order of approximation maywblized. Enforcing the appropriate confor-
mity properties of the approximation across element iat@$ is typically a difficult task in this case, and
recent work on this problem was presentedJogeph Coyle He first related the problem to the intrinsic
orientation of the edges and faces as well as the global numgpef the basis functions. Observing that an
appropriate reordering of the local numbering of the vediallows any global tetrahedron to be reduced to
one of two possible reference tetrahedra that leads the avdlid construction of the hierarchic bases where
ease of implementation is not sacrificed.

The theory of hp-discretizations for Maxwell problems wagiewed byl eszek Demkowicz who sum-
marized the main points of the projection-based interpmiatheory, convergence results for Maxwell eigen-
values and recent results on the existence of polynomiakpving extension operators in H(curl) and H(div)
spaces. He then spoke on the subject of goal-oriented hptteitha presenting an extension of the original,
energy-based hp-algorithm and its applications to boeelmging EM simulations. Finally, he discussed
the impact of automatic hp-adaptivity in simulations irnwrob the use of PML. The automatic reproduction
of “boundary layers” by the hp-adaptivity significantly texmbs the tedious design and tuning of PMLs.

Although direct scattering problems in cavities and waviggsiare typically linear and well-posed, they
are difficult to solve numerically because the oscillatoayune of the solution forces the use of large numbers
of degrees of freedom in the numerical method, and the ieguihear system defies standard approaches
such as multigrid. This is a particular problem at high freeies when the scatterer spans many wavelengths.
In an effort to improve the efficiency of a volume based apphaas the frequency increases and to allow the
solution of problems at widely different frequencies onragie grid,Peter Monk described his recent work
in the use of plane waves as a basis for approximating theesedtfield. These are used in a discontinuous
Galerkin scheme based on a tetrahedral finite element méghmkethod is termed the Ultra Weak Variational
Formulation (UWVF) by its originators O. Cessenat and B. @es. The use of the Perfectly Matched
Layer or Fast Multipole Method to improve the artificial baiamy condition needed by the method was also



discussed. Interestingly the linear system from the UWVEsdsier to solve than the one arising from the
finite element method, and this allows a simple parallel enpgntation of the method. The method has been
validated on a variety of problems, and extended to the diceelastic fluid-structures problem.

The use of spectral methods in wave scattering is a veryeafigld of researchJie Shenpresent an
efficient and stable spectral algorithm and their numergellysis for the Helmholtz equation in exterior
domains. The algorithm couples a boundary perturbatidimigoe with a well-conditioned spectral-Galerkin
solver based on an essentially exact Dirichlet-to-Neumaerator. Error analysis as well as numerical
results were presented to show the accuracy, stabilityyargtility of this algorithm.

Recent investigations of the spectral properties of therdis Discontinuous Galerkin (DG) operators
have revealed important connections with their continuGaserkin analogs. Theoretical and numerical
results, which demonstrate the correct asymptotic behafithese methods and precludes spurious solu-
tions under mild assumptions, were presentediny Warburton . Given the suitability of DG for solving
Maxwell's equations and their ability to propagate wavesrdeng distance, it is natural to seek effective
boundary treatments for artificial radiation boundary d¢tods. A new family of far field boundary condi-
tions were introduced which gracefully transmit propaggtnd evanescent components out of the domain.
These conditions are specifically formulated with DG ditzagions in mind, however they are also relevant
for a range of numerical methods.

2.4 Special techniques

As mentioned earlier, there has been much work recentlyardévelopment of specifically tailored tech-
nigues for wave scattering problems. Examples of such walkide the use of asymptotic formulae derived
using classical techniques, and Huygen’s principle.

Paul A. Martin provided the first classical derivation of the Lloyd-Beroyrhula (published in 1967) for
the effective wavenumber of an acoustic medium filled witparse random array of identical small scatter-
ers. The approach clarifies the assumptions under whichitlyeliBerry formula is valid. More precisely, an
expression for the effective wavenumber was derived, asgptine validity of Lax’s quasicrystalline approx-
imation but making no further assumptions about scattézer fn the limit of vanishing scatterer size it was
shown that the Lloyd-Berry formula is recovered. We have alstained a similar formula in two dimensions.
The methods employed should extend to analogous electratiagnd elastodynamic problems.

Among the well-known challenges that arise when computieginsteady wave fields is the deterioration
of numerical schemes over long time intervals (error bya)dand the unboundedness of the domain of defini-
tion. The latter is typical for many applications, e.g., tlog scattering problems, when the waves are radiated
toward infinity. In the literature, a standard way to deahwite first issue is to increase the order of accuracy
(quite independently, paraxial approximations can be eygul), whereas the second issue requires trunca-
tion of the domain and setting of artificial boundary coratis (ABCs). According to conventional wisdom,
exact ABCs for multidimensional unsteady problems are oxadlnot only in space but also in time, and the
extent of temporal nonlocality continually increases ametelapses. It turns out, however, that in many cases
both types of difficulties can be addressed using a unifiedoagh based on exploiting the Huygens's princi-
ple. The propagation of waves is said to be diffusionlesd,tha corresponding governing PDE (or system)
is said to satisfy the Huygens principle, if the waves duestogactly supported sources have sharp aft fronts.
The areas of no disturbance behind the aft fronts are callathbe. Diffusionless propagation of waves is
rare, whereas its opposite - diffusive propagation witeradiffects is common. Nonetheless, lacunae can still
be observed in a number of important applications, inclgdicoustics and electromagnetism. The key idea
of using lacunae for computations is that any finite sizearedalls behind the propagating aft front, i.e., right
into the lacuna, after a finite interval of time. In other wareny given feature of the solution will only have
a finite predetermined lifespan on any fixed domain of inte®g incorporating these considerations into a
numerical scheme, one can make its grid convergence unifotime. The same considerations facilitate de-
sign of exact unsteady ABCs with only fixed and limited (hanreasing) extent of temporal nonlocality. At
the workshopSymon Tsynkovdescribed recent progress made in constructing the ladoersel numerical
schemes for the d’Alembert equation, as well as for the limed Euler equations and the Maxwell equations.
He also discussed different physical models from the staintljpf existence of the lacunae and showed in
some interesting cases that are technically speakingsifue.g., the propagation of electromagnetic waves
in dilute plasma, lacunae can still be identified in the sohg in some approximate sense.



2.5 Preconditioning strategies

The efficient solution of the linear systems obtained as aeguence of the discretization of exterior scatter-
ing problems is an open problem, since these systems acallygiense. Canned preconditioning techniques
have been rather unsuccessful. Part of the difficulty in teegnditioning of frequency-domain problems lies
in the indefinite natue of the associated linear systdRaodhert Beuwensgave an overview of the principles
behind complex iterative schemes, used to solve large esfiaesar systems of equations. He discussed two
kinds of methods, which are often used in combination: prditmning methods and convergence accelera-
tion methods. Preconditioning methods aim at building gir@pmate system close to the one to be solved
but which is inexpensive to solve both in terms of computingetand memory requirements. Convergence
acceleration methods are used to transform slowly corvgrgquences or even diverging sequences into
rapidly converging sequences. Acceleration techniqupslpotoday include the polynomial acceleration or
Krylov subspace methods as basic blocks in the buildingafeiate preconditioners. The talk concluded
with recent developments concerning multi- level and reigerordering methods on the one hand and the
parallelization of preconditioned Krylov subspace method the other hand.

Preconditioning techniques have recently been developetdundary integral equations used in this
context; there is a pressing need for a systematic predonitij strategy for other algorithms as well. The
use of Calderon projections in the study of integral equatiuggests the use of operator-level precondition-
ers, where the continuous problem is preconditioned byiegtdn of suitable pseudo-differential operators.
Discretization is performed only after this preconditimni The electric field integral equation (EFIE) arises
in the scattering theory for harmonic electromagnetic wa¥enalisa Buffa described an optimal precon-
ditioning technique for the conforming Galerkin approxtioa of the EFIE via Raviart-Thomas finite ele-
ments. At the continuous level, Calderon formulas providexplicit representation of the inverse operator
of the electric field integral operator up to compact pertigins. A stable discretization of the Calderon for-
mula was presented, and then an optimal preconditioneh&linear system which arises from the Galerkin
discretization of the EFIE was shown.

Jean-Claude Nedelealso spoke on preconditioning the Maxwell integral equetiosing Calderon iden-
tities

Starting from the well known combined boundary integrahfatations due to Brakhage/Werner and
Burton/Miller Olaf Steinbachreviewed existing modifications which are needed for the enical analysis
in the correct function spaces. While most of the proposedifications rely on a compactness argument,
the current work involved an alternative approach, whictteto a stable approximation scheme.

The symmetric coupling of finite elements and boundary etemfor electromagnetic problems results
in highly ill-conditioned linear systems of equatiodatthias Maischak presented a block-preconditioner
for the GMRES method which is based on domain decompositiethoads applied to the “FEM-part” and
the “BEM-part” separately and analysed the eigenvalueiligton of the preconditioned system. It was
shown that the efficiency of this method only depends on ttie of coarse grid mesh size and the overlap.
Numerical examples for the eddy-current problem undetheesfficiency of this method.

2.6 Inverse problems

While describing important applications of scatteringatye one is naturally lead to consider inverse prob-
lems. Important inverse problems include the reconswoaf biologically relevant information from med-
ical tomography data, the location of hydrocarbons basese@mic imaging information, and the detection
of mines. Mathematically, inverse problems in scatterioggosevere challenges due to their ill-posed nature.
Fioralba Cakoni spoke on mathematical and computational aspects of infes#romagnetic Scat-
tering Problems, specifically as it pertains to synthetierape radar (SAR). SAR suffers from limitations
arising from the incorrect model assumptions which ignar bmultiple scattering and polarization effects.
The main theme of this talk was the use of a qualitative mettimlinear sampling method, to solve inverse
electromagnetic scattering problems. Cakoni first intoedlthe main mathematical ideas of the linear sam-
pling method for the simple case of electromagnetic sdagday a perfect conductor. She next showed how
to use the technique to find both the shape and the surfacelanpe of a partially coated perfect conductor
without knowing a priori whether the obstacle is coated.hie tase of an inhomogeneous background, she
presented a new method which avoids the need to compute g#en&ifunction of the background media.



Numerical examples showed the validity of this approach.

Some recent developments in inverse scattering were tesdoyDavid Colton, who also discussed a
major open problem in the field.

Scattering theory in periodic structures has many apjdicatin micro-optics. The treatment of the in-
verse problem, recovering the periodic structure or the@sltd the grating profile from the scattered field,
is useful in quality control and design of diffractive elem® with prescribed far field patternsseorge
Hsiao discussed an inverse diffraction grating problem to recawgvo-dimensional periodic structure from
scattered waves measured from above and below the stru¢hegroblem was reformulated as an optimiza-
tion problem including regularization terms. The solutisrobtained as the minimizer of the optimization
problem, where the objective function consists of thremserthe residual of the Helmholtz equation, the
deviation of the computed Rayleigh coefficients from the snead data, and the regularization term to cope
with the ill-posedness of the inverse problem. He then dlesdrsolvability and parameter sensitivity of the
algorithm, and showed some numerical experiments vatigdkie approach.

3 Presentation Highlights

The workshop brought together experts in a variety of comtral techniques, with a focus on exterior
scattering problems. In addition, graduate students asttpotoral fellows were invited, to establish con-
nections with established mathematicians. To optimizearesh interaction, several different activities were
planned:

e 30 minute lectures by experts

e Poster presentations by graduate students and postdeqsogters were on display for the duration of
the workshop in the coffee room area. Since this area washhegilized during breaks, the students
and postdocs got several opportunities to discuss theik with other mathematicians. We actually
recommend this format for poster sessions for future wargshthe younger mathematicians were
very appreciative of the extended opportunity to showchasie tesearch.

e Two panel discussions: At the end of Day 2 and Day 4 of the wmgspanel discussions were held on
integral equation methods and finite element methods régelyc These lively discussions included
presentations of open problems, discussions of key clgdkeand suggestions for future research.

¢ Informal lectures: several expert mathematicians voknetg: to give informal lectures to the graduate
students. Particularly given the range of mathematicakrige at the workshop, this was a very
valuable opportunity for the students.

3.1 Poster presentations

e Binford, Tommy (Rice University)
Title: Experiments with a Dirichlet to Neumann Map for High Order Finite Elements
For electromagnetic scattering problems, the number afedsgof freedom to acheive a desired accu-
racy can be prohibitively large depending on the domainifigidl boundary methods are a powerful
tool for treating radiation conditions while preserving frhysical behavior with fewer degrees of free-
dom. Work by Nicholls & Nigam on Dirichlet to Neumann maps Ipasvided a method of handling
the radiation condition for perturbed simple geometrieshsass a circular boundary. In this poster,
Binford showed experiments where one applies a high ordiée Blement method in conjunction with
a Dirichlet to Neuman map to solve Helmholtz’ equation foight circular cylindrical scatterer with
different perturbations of a circular artificial boundakyay from the scattering object.

e Ecevit, Fatih (Max Planck Institute)
Title: High-frequency asymptoticsand convergence of multiple-scattering iterationsin two-dimensional
scattering problems
One of the main difficulties in high-frequency electromagmand acoustic scattering simulations is
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that any numerical scheme based on the full-wave modellenies resolution of the smallest wave-
length. It is due to this challange that simulations invedyeven very simple geometries are beyond
the reach of classical numerical schemes. Ecevit presaemtedalysis of a recently proposed integral
equation method for the solution of high-frequency elentignetic and acoustic scattering problems
that deliverserror-controllable solutions in frequency-independent computational times. Within single
scattering configurations the method is based on the useaf@opriate ansatz for the unknown sur-
face densities and on suitable extensions of the methodudisary phase. The extension to multiple-
scattering configurations, in turn, is attained throughstaeration of an iterative (Neumann) series
that successively accounts for multiple reflections. Hezalerive a high-frequency asymptotic expan-
sion of the successively induced currents in this lattec@dare and, within this context, we derive an
estimate for its convergence rate. As we show, this ratepditty computable and it depends solely
on geometrical characteristics; in particular, it is inelegent of the specific incidence of radiation. Nu-
merical results confirm the accuracy of this high-frequeestymate for the case of several interacting
structures.

Han, Young-Ae (Caltech)

Title: A Continuation Method for high-order parametrization of arbitrary surfaces

In this poster, a super-algebraically convergent techtguapproximate complicated surfaces in 3-D
using locally smooth functions was presented. The methodrately renders geometric singularities
such as edges and corners. The approach was based on eanéaah smooth branch of a piecewise-
smooth function into a new function which, defined on a ladgmnain, is both smooth and periodic.
These “continuation functions” have Fourier coefficiehtsttdecay super-algebraically, and thus result
in high-order approximations of the given function throaghits domain of definition. Among other
benefits, this approach resolves the Gibbs phenomenon. f&ashowing the success of this strategy
were also shown.

Kurtz, Jason (U. Texas at Austin )

Title: Fully-Automatic hp-Adaptivity for Acoustic and Electromagnetic Scatteringin 3D

Two popular strategies for studying exterior scatteringbpgms are coupled FEM-PML or FEM-
Infinite element methods. This work describes an adaptivefipement algorithm for both strategies
which yields exponential convergence in the energy norme Ajiradaptive method is ideally suited
for scatterers with geometric singularities and/or foictisizations truncated by a perfectly matched
layer. Three crucial implementation issues were addressbé poster: namely, fast integration of el-
ement stiffness matrices, a domain-decomposition medtitbl solver, and a “telescoping” solver for
a sequence of locally nested meshes. Computational regefespresented for both PML and infinite
element truncations.

Sifuentes, JosefRice University)

Title: GMRES performancein integral equation methods for scattering by inhomogeneous media Dis-
cretizations of integral equation techniques lead to lirgatems which are solved iteratively (typi-
cally using GMRES). The number of iterations increases idenably with wave number.The poster
described recent investigations into the wave-number ribgrece of the spectrum of the discretized
integral operator. This line of research will eventuallsdeto better preconditioning strategies.

Open problems and future directions

One of the big successes of this workshop was due to the Bicigy@nerosity of the participants, who not
only provided clear expositions on their work, but also dethopen problems and future directions they
believed to be of significance. Some of these were reitediedg the two panel discussions (summarized
below) and informal talks.

Over the course of the workshop, the participants identsi@tie major directions for future research.

Problems which need theoretical and analytical work ineladreful investigations into wave-number de-
pendent error analysis of existing algorithms, and preitimmihg strategies. At the computational level, the
community felt the need to develop benchmark problems tatgerithms, and demonstrate the effectiveness
of computational strategies on scattering from complexcstires and physics.
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Another concern which was shared was the overwhelmingta#guired in meshing complex geome-

tries.

It is estimated that of the total time spent on stughgnattering problems in an engineering context,

developers spend around 80% of their time on describing ¢bengtry and implementing meshes, and only
20% on the actual simulation. While no consensus emergedwrbhst to deal with this problem, it became
clear that for newer algorithms to become widely applicathiey had to account for this bottleneck.

To get a full flavour of the range of open problems suggestecereourage the interested reader to look
at the website:

http://ww. mat h. ncgi | | . ca/ ni gam BANFF/ front . php

This website contains many of the talks, and links to pao#iot websites and papers.

4.1

Integral equation techniques

It is well-known that most numerical methods for scattepngblems require a mesh which can resolve
the incident wave. This means, in particular, that the sfzth@® mesh grows with the wave number
k. However, in some situations this may not be necessary. ¥amnple, the scattering of a high
frequency wave off a convex smooth obstacle should not recuich high numerical resolution. An
open problem is to characterise the scattering problemwliath O(1) discretizations are possible as
k — oo. Does the convexity of the scattering object play an impuntale, is smoothness of material
properties crucial?

Integral equation techniques rely on the fast and accuratdrqture of oscillatory kernels. This poses
interesting problems in the theory of quadrature, not jastricted to scattering. For example, how
should one deal with oscillatory integrals, particularlycomplex 3-D geometries, in O(1) computa-
tional time, without sacrificing accuracy?

A major open area of investigation remains the hunt for gaed@nditioners in the twin limit as mesh
sizeh — 0 and wave numbet — oo.

Geometrical optics is a powerful tool for studying very highquency scattering. While developing

numerical algorithms suitable for a range of frequenciesjould be desirable to incorporate ideas
from geometrical optics to deal with the high frequency ngn application would be, for example,

acoustic muffling problems, where an integral equationesotray be appropriate for the object, and
geometrical optics suffices to capture the large-scale amdspheric effects.

An important open area in the numerical analysis of scatgesigorithms concerns estimates (above
and below) of condition numbers for integral equations femeyal objects. Some results are known on
simple geometries, but these need to be extended.

A specific question in the numerical analysis of integralaun techniques is whether the Galerkin
method is stable for classical Brakhage-Werner integrahgns on Lipschitz domains.

The error analysis of the classical Brakhage-Werner ialggedicts a condition number which grows
asO(k'/3) ask — oo. This is not reflected in actual computations for a largesstdiscatterers. Why?

There exist a profusion of algorithms for scattering, d@an certain specific frequency regimes.
The workshop participants agreed that a key goal is to eskabtability for any numerical method
uniformly in wave numbek.

Much is known about the physics of wave propagation andaeterm in anisotropic and inhomogenous
materials. Rather than look for a preconditioabiinitio, a fruitful direction of research would involve
using knowledge of the physics to design optimal precooilis.

While describing a scattering problem in terms of integplagions, one has several choices. Some
integral equation formulations are more suitable for comaion than others; exploiting this requires a
detailed understanding of the spectral properties of uariotegral equations.
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A valuable contribution from the community would be a set oh+irivial computational examples,
showing the efficacy of integral equation based methods régent, open-source software for bound-
ary integral equations is not as well-developed as it'sdirlement analog.

There are some situations where integral equation methedbath natural and more efficient than
volumetric discretizations. An important project would tmeclassify the problems on which one
should use integral equation methods.

Domain decomposition methods are powerful tools which Enphrallelization of computation, par-
ticularly for large obstacles. Communication between domaccurs via Stekhlov-Poindamaps,
which are accurately described in terms of integral opesatilore investigation is needed into opti-
mal combinations of integral equation methods and domasomi@osition techniques.

The use of integral equations of the second kind to solveiextgcattering problems is popular, in par-
ticular since the integral operators involved are not diagstandard boundary element techniques do
not always seek approximations in the correct Sobolev spdedeed, integral equation techniques are
quite versatile, and performing discretizations appitpty will allow for a wider range of problems
to be solved.

Integral equation methods lead to dense matrices; a loterfitidn has been paid recently to operator-
level preconditioning to improve the computational effiwig of these methods. Calderon projections
offer many possibilities in terms of reformulations of igtal equations; these need to be further ex-
amined for their computational suitability. Upon precdiadiing with these projections, an integral
equation of formBxz = F can be transformed to one of type

ABx = (I — K)x = AF.

A closer theoretical investigation of the compact operafas required for various projection methods.
In particular, what is the behaviour of these projectionthatdiscrete level, in the presence of meshes
with high aspect ratios?

At the discrete level, both storage and efficient computadicthe linear systems arising from integral
equation methods poses challenges. One fruitful directfamork which needs more development is
the use of algebraic approximation methods and hierariamatiices in this context. Itis, for example,
not obvious how one should precondition a system arising fitee use of an adaptive mesh.

Volumetric discretization techniques and artificial baundary conditions

Multigrid techniques for scattering require that the ceatgrid resolve the wavelength of the incident
wave. This is too severe a restriction for this method to laetiral at high frequencies; a variant of a
multilevel technique which is genuinely independent ofjfrency is required. Similarly, while domain
decomposition techniques are gaining popularity, the dégece of their performance on wavenumber
is not clearly described.

Scattering problems which involve wires or thin structuaes notoriously difficult to solve, but ap-
plications involving wires and antennae are very importdar example, one may wish to study the
electromagnetic fields inside the fuselage and body of qoleaie, with the goal of reducing it's sig-
nature. In such applications, actually meshing to the lef/éhe wire, while simultaneously capturing
the large-scale object, will require either an extremefgdamesh or a highly graded one. Existing al-
gorithms need to be tested against benchmark problems/ingavires, and we need to develop other
algorithms if required.

Plane-wave time-domain discretization techniques angirggpopularity. Here, one approximates the
scattered field using plane wave basis functions. Theseithlgs need to be rigorously analysed for
their convergence and stability properties. It has alrdsehn noticed that plane-wave techniques can
be cheaper and more accurate than methods reliant on trggtrio or polynomial basis functions,
provided one has some a priori knowledge of the directiomeftave to be approximated. The use of
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other special basis functions, to enable high-order cafimns in an inexpensive fashion, also needs to
be further investigated.

¢ In practice, the description of obstacle shapes or theé@mtisvave requires the use of stochastic param-
eters and shapes. Few high-order methods currently existddying stochastic scattering problems;
this field provides a wealth of open problems.

e As for the study of Integral Equation based methods, the amalysis of volumetric algorithms rarely
includes explicit dependence on the frequency for quastibf interest. A major theoretical undertak-
ing would be to develop tools to evaluate the dependence tiggoinequency.

¢ \olumetric solvers, when coupled with appropriate bougaanditions, can lead to essentially sparse
systems, which unfortunately are not positive-definite. #&janopen problem remains the construction
of efficient solution techniques at the discrete level, ppshusing low-frequency or elliptic problems
as preconditioners.

e Current convergence and stability results on vector-typitefielement techniques for scattering do
not extend to highly anisotropic meshes or materials. Shigh-contrast and strongly anisotropic
materials occur in practice, a careful study of numericathoés in this context is required. Indeed,
effectivea posteriori error estimates are not available, making adaptive mesfiiesil to implement.

e Aninteresting question arises in the study of electromtigseattering: since the solutions of Maxwell’s
equation obey the Gauss, Ampere and Faraday laws. Shou&diement approximations obey these
at the element level? Is there any room for “fully compatitikcretization” of electromagnetic waves?

e hp-adaptive finite element techniques can be very efficipatiicularly when the scatterer or the
medium has several scales, near-singular geometric ésatar strong anisotropies. A rigorous er-
ror analysis of such methods for a variety of scattering lgmls remains an open challenge.

e The perfectly matched layer of Berenger has been very ssitd@s certain contexts. Is there a stable
PML for all symmetric hyperbolic systems? What about the PidtLanisotropic elastic scattering: Is
it stable?

e Exact boundary conditions are exact implementations oStie&hlov-Poinca& maps on a truncating
boundary. Is there a purely local (in space and time) examdary condition for the wave equation in
the time domain?

This list of open problems by no means exhausts the issuegiraip during the workshop; several
more technical questions were presented in the actualaakkgposters, for which we refer the reader to the
associated website.
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