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1 Introduction and overview of the Field

Reaction-diffusion equations, semilinear diffusion eépres and free-boundary problems form an important
domain of the theory of partial differential equations tlsaboth very rich and challenging mathematically
and is intricately related to numerous applications in matschemical and biological sciences.

The purpose of this conference was to bring together relseerdn various areas of this field as well
as applied mathematicians to highlight the recent devedopsnand discuss the open problems that are of
interest both from the mathematical perspective and froenphint of view of applications. Due to the
enormous activity of the field, it was impossible to coverrgu®pic in reaction-diffusion equations. We
have, chosen to lay the emphasis on the following items, watonsidered as particularly interesting in
view of their mathematical richness, and potential appilices. The following subject have particularly been
focused upon:

e Singular perturbations, free boundary problems and reactiliffusion equationsThis topic is a clas-
sical one in reaction-diffusion equations - see for instalfife [15], but has undergone very important
developments in the last years, such as the recent progréss proof of the de Giorgi conjecture, the
description of the Ginzburg-Landau vortices dynamicsrégeilarity theory of free boundary problems
and the dynamics of reaction-diffusion systems.

e Complex propagation phenomena in reaction-diffusion ¢iquna Although some mathematical mile-
stones in the theory of reaction-diffusion equations datklbo the 1930’s, they were mainly concerned
with homogeneous situations. More realistic heteroges@eaction-diffusion equations or systems
have been handled only relatively recently. Over the regeats, mathematical results have consid-
erably enriched our understanding of these models and bi@ogical applications. A very partial
list of examples of areas where considerable recent predras been made include the propagation
phenomena related to the existence and the dynamical piexpef travelling fronts in heterogeneous
environments.

e Homogenization, stochastics and dynamics of reactidiugidn equationsHomogenization of reaction-
diffusion and Hamilton-Jacobi problems in a periodic medis by now well understood. However,
only recently progress has been made in similar issuesridiora media. Reaction-diffusion equations



are closely connected to the large deviation problems féusion processes and weak stochastic per-
turbations of dynamical systems. Recently much progresb&en made in asymptotic theories in this
area, including the situations when the underlying dynahsgstem is itself random.

2 Recent Developments and Open Problems

2.1 Singular perturbations, free boundary problems and reation-diffusion systems
2.1.1 Phase transitions, geometric methods in elliptic e@tions, and the de Giorgi conjecture

The equilibrium state of a binary alloy may be described lgydblebrated Allen-Cahn equation:uifx) €
(—1,1) denotes the local proportion of each component, we have

1
—Au = 6—2W/(u), reRY (@)

whereW is an even potential, having global minima-at. Whene is - at least formally - sent to O, the
limiting solutionw of (1) takes the values 1 of1, the interface between the regiohs= 1} and{u = —1}
being separated by a surfaCevith zero mean curvature. The interface equation is not st feederive in a
formal fashion: assuming thatis smooth, and letting (x) be the unique solution of

¢y =W'($0), ¢o(Eoo) = £1, ¢o(0) =0,
a plausible ansatz for the solutian of (1) is

d . : :
ue () ~ ¢o($), with d(z) = dist(z,T") (signed distance)
which yields: Ad = 0 onT'. This precisely says that the mean curvatur® @& zero. A mathematically rig-
orous derivation of that fact is, of course, much more diffidlodica and Mortola [31] prove the following
version of this fact: a sequence of minimizéus ). of the functional

U= /(%|Vu|2 - éW(u)) dx

converges to a difference of characteristic functions effdtm x g — xq\ z; moreover the sefZ N Q2 is a
minimal hypersurface.

The de Giorgi conjecture states the following:

(i) (Nonexistence part) Given a potentidl as above, analytic in its argument, igtr) satisfy

—Au=W'(u), r € RY; Ou > 0. )
8:er

Then the level sets af are hyperplanes, at leastif < 8.

(ii) (Existence part) FoiV > 9, there are truly multi-dimensional solutions of (2).

This conjecture was motivated by:

- atheorem of J. Simons [38], asserting that any minimallyrepfined over the whole spaié'—*!, has
to be an affine function,

- a theorem of Bombieri, de Giorgi, Giusti [8] asserting tHfat N — 1 = 2m > 8, the Simons cone

m 2m
O a7 = > a?}isminimal.
i=1 i=m+1
The de Gigrgi conjecture is also deeply related to the stddiieolevel sets of converging sequences of
solutions of (1): the nonexistence part says that thesédete are uniformly Lipschitz - and that an internal
layer expansion is justified.
The nonexistence part of the conjecture was recently praveftll generality, by Savin [34]. Earlier
results were proved by Ghoussoub-Gui [2}] & 2), Ambrosio-Cabe [1] (N = 3), Ghoussoub-Gui [22]
(particular cases of the dimensions 4 and 5).



2.1.2 Free boundaries in reaction-diffusion equations, aththeir qualitative properties

A typical instance of the free boundary problems on whichdbeference focused is the following class of
parabolic equations

1
T, — AT =

S0 -T)exp(—1) = (1= T)f(T), xRV, 3)

Such an equation is a - fairly good, and still widely employedqualitative predictions - model for the
propagation of a flame in a combustible mixture; the functitf, z) represents the temperature of the
mixture and the right-hand side accounts for the rate atlwfie chemical reaction proceeds. The parameter
e is the inverse of the - fortunately large - reduced activagoergy. As one may realize, the reaction term
f-(T") is concentrated at the valié= 1, which is here the normalized burnt gas temperature. Whigsent

to O, the problem can be shown - at least in a formal fashiortertd to the more singular one:

T, — AT = dp—;. 4

The space is here separated into two regiofif: < 1} and{T" = 1}, and the normal derivative of the
temperature - provided it exists! - undergoes a jump of siz¢ the boundary{T" = 1}. Deriving (4)
formally is not so difficult: it is a classical internal layanalysis; doing it in a mathematically rigorous
fashion is once again a hard problem.

Important progress has been made in the treatment of freedlaoy problems by Caffarelli and his col-
laborators, especially in the understanding of their ragiyl The methods range from potential theory and
harmonic analysis to geometric measure theory; see fannstthe series [9] - regularity of elliptic FBP's,
[2] - regularity for the Stefan problem, [10] - monotonicfrmulae implying uniform estimates for problems
of the type (3); see also [11] where a lot of these ideas aresexp This wide body of methods and ideas
have been applied - to many other types of problems, suchrasdenization of free boundary problems,
singular perturbations - the proof of the de Giorgi conjeetay Savin is inspired by the ideas of Caffarefi
al. -, fully nonlinear reaction-diffusion equations...

2.1.3 The dynamics of reaction-diffusion systems

Reaction-diffusion systems may exhibit complex dynamaesl important hints in their description are pro-
vided by singular perturbations. Examples of complex dyisamay already be found by the following slight
generalization of equation (3): assume that the chemieaitian follows the single-step scherde— B,
and assume that the reactahtloes not diffuse in the same fashion as the temperature: gpaswneter -
the Lewis number, denoted biye - enters into play. Let (¢,2) denote the mass fraction of the reactant;
equation (3) becomes

Y, - g = _st(T) (5)
This system has 1D travelling wave solutions, see [7]. A fasncomputation of Sivashinsky [39] indicates
that, asle getss-far from 1, the wave destabilizes into multi-dimensionatterns L.e < 1) or into pulsating
waves(Le > 1); this was proved in a rigorous way in [23]. Of interest if thehlvior of the flame front -
here, the sefT — 1 ~ ¢} near the critical parameter; if the front is described by @by = ®(t,z)},
an evolution equation is once again provided by Sivashifid®)in the form of the celebrated Kuramoto-
Sivashinsky equation:

{ T, - AT = Y/f(T)

1
<I>t+A2<I>+Aq>+§\V¢>\2=o. (6)

A lot has already been said on (6); due to its universal claradt arises in a lot of interface problems -
the subject is still extremely active. Its rigorous deriwvatfrom (5) seems to be a challenging open problem.
Depending on the geometry considered and the values of tvés lmimber, the flame front may satisfy
extremely diverse types of evolution equations; see faaime [27] for a version of (5) witle < 1.

A singular perturbation may also occur in a reaction-diffasystem under the form of a small diffusion;
a generic presentation for the system would be

{ w—Au = f(u,u)) @

v —elAv = g(u,v



Singular perturbation results for ordinary differentigliations date back to the early 60’s; however a seminal
work of C. Jones, unifying all these results in the framewafrgeometric theory of dynamical systems, has
fostered a large body of works investigating complex waveepas for (7). Stability of travelling waves is an
important topic that has been addressed to in the worksloope $mportant problems of the moment include

e Complex flame models - such as flames in two-phase flows;

e biological models - such as the Gray-Scott or Gierer-Meaidheodel; see the talk of A. Doelman
below;

e detonation models. This last topic is particularly challieiy: such models include the whole set of gas
dynamics equations, plus an equation for the chemistry.stddality of detonation waves is a complex
problem, and the introduction of a reduced model for fastegdaa porous media, by Gordon-Kagan-
Sivashinsky [24] seems to be quite promising.

2.2 Complex propagation phenomena in reaction-diffusion guations

Reaction-diffusion equations appear in many differenaaref physics and of the life sciences. They are
commonly used to describe phase transitions in variousegtsin physics and in chemistry. In combustion
theory, for instance, these equations arise in models ofeflarapagation. Equations of this kind play a
central role in modeling biological invasions in varioutiations (population dynamics, physiology, wound
healing, tumor growth, etc, see the classical books of MuUBa] and Shigesada and Kawasaki [37]).

The existence of traveling wave like solutions is an esakfgtature of this class of equations that is rele-
vant for all the models mentioned above. It is strongly ezlab propagation phenomena that are particularly
important and again a common feature in these areas.

As a mathematical subject, the study of reaction-diffustgoations, traveling waves and propagation
properties is very active now. Even though, it was first idtroed in the homogeneous framework in the late
1930s (see [16, 26]), there has been a profusion of worke $hec1970s with results that have profoundly
enriched our understanding of these equations. It is otdfively recently that researchers have been able
to address propagation and traveling fronts in heterogeneavironments and to take into account other
phenomena, such as transport, interaction with envirobnsémgular behavior etc. The recent years have
indeed seen much progress on these questions.

H. Berestycki (EHESS) gave two lectures on recent advamcis area. He first reported on several pa-
pers with F. Hamel and N. Nadirashvili [3, 4, 5] on existenod qualitative properties of pulsating traveling
fronts in periodic media, for reaction-diffusion-advectiequations of the type

uy — div(AVu) + q- Vu = f(z,u), z€Q, (8)

when A(x), ¢(z) and f(x,u) have the same periodicity in thevariables as the domaif? itself. The
influence of different phenomena involved — such as trasgiffusion, reaction, geometry of the domain —
on the speeds of propagation were discussed. For instavegaswell-known facts can be proved rigorously:
the perforations slow down the propagation, whereasmimiways speeds up the fronts.

Another key notion involved here is the asymptotic speegofading in domains which have no period-
icity. The spreading speed in a given direction is definechaspeed of the leading edge of the solution of
the Cauchy problem at large times. For the solutions of theon

ug = Au+ f(u) )

in general domain$) with sub-linear nonlinearitieg of the Fisher-KPP type0( < f(s) < f/(0)s for
s € (0,1) with f(0) = f(1) = 0), the spreading speeds may depend in general on the donthionathe
initial condition, even if the solution is initially comp#yg supported. Even for this homogeneous equation,
very interesting new phenomena appear, due to the compteretey of the domain. For instance, in very
narrow domains, the spreading speed may be infinite.

More complex dynamical behaviors may also occur. Roughdaking, even for simple models (9) and
even in dimension, when the nonlinearity is of the combustion typef(= 0 on [0, 6], f > 0 on(6,1) and
f(1) = 0with 0 < 6§ < 1) or of the bistable typef{ < 0on(0,6), f > 0on(#,1)andf(0) = f(8) = f(1) =



0), then propagation may occur or fail according to the sizéhefinitial condition. For instance, for bistable
nonlinearities with positive mass ovfl, 1], A. Zlatos [40] recently proved that, when the initial comati

at time 0 is the characteristic function of an interval, then thera isritical positive interval size below
which the solution will eventually converge @ouniformly in x € R, and above which it will converge tb
locally, and actually develop into two expanding frontsr f critical interval size, the solution eventually
converges to the unstable non-trivial ground state. Evéimeifresults are not as precise when the equation
involves heterogeneous coefficients and in particular acgomstant flow, propagation/quenching issues were
addressed recently and special attention has been put ocol¢hglayed by the profile of the underlying flow
(see P. Constantin, A. Kiseley, L. Ryzhik, A. Zlatos [12,)25]

Further generalizations of the notion of traveling frontvave in general heterogeneous frameworks were
recently introduced for general systems of partial difféied equations. These new definitions are based on
uniform limits far away, with respect to the geodesic diseamside the domain, from some hypersurfaces.
These notions extend the previous known cases of periodibyarst-periodic environments. General situa-
tions like the propagation in curved tubes, exterior domagtc can now be considered. The determination
of the shape of the leading edge of the fronts and the stabilithese new fronts are some of the main goals
of future work.

The question of propagation in media which are locally peed is an open problem which is one of
the most important cases for the applications. Indeed,ahedssues of propagation can be asked when the
medium is homogeneous (or even periodic) outside a lochlipee and the definition of generalized waves
is also adapted to this situation. The archetype is the amguéd), where the coefficients, ¢ and f, or the
domain{2, are homogeneous or periodic outside a compact set. Thig isase of a tube which has a local
stricture. What are the necessary and sufficient conditmhsve propagation ?

Another very interesting open problem is to describe th@agation of generalized fronts in media for
which some diffusion or reaction coefficients are monotort@eé direction of propagation, or more generally
when the characteristics of the medium are different famdhend far behind the front. These questions
may depend strongly on the nonlinearity, propagation mijdiabistable nonlinearities whereas, everything
else being unchanged, propagation may occur for monosegplations. These problems have concrete
applications in combustion or in biological models for arste.

Biological invasions are indeed one of the most common elesngf propagation phenomena and it
seems fair to say that these are the most widely used egsati@tological and biological modeling (epi-
demics, epizootics and tumor growths can also be modelleddmtion-diffusion equations). Much progress
has been made in the recent years about the mathematicgsiarafl such models. It helps to have a better
understanding of the concrete applications and to be abtsat@ reasonable predictions. For instance, for
ecological models of the type

up = div(A(z)Vu) + (u(z) — v(z)u)u (20)

in periodic fragmented environments, light was recentlydsbn how a spatially diverse environment affects
biological invasions or species survival in this contextleas fragmented medium, which means that the
favourable and unfavourable regions are more aggregatedtter for species persistence (see [6]).

More complex models can also be used in the applications. nAexample, aggregation phenomena
for bacteria can be modelled by systems of equations whigtivia chemotactic terms, meaning that some
species tend to diffuse in the direction of positive conin gradient of a chemical agent (see [32]).
In other contexts, nonlocal models can be used to model lange dispersion and new versions of the
maximum principle, which is one of the most powerful toolgéaction-diffusion equations, were recently
established.

In mathematical terms, from a dynamical point of view, frprdpagation can be thought of as the invasion
of a more unstable or less stable state by a more stable arretable state. Even if most models do not have
a variational structure and no Lyapounov functional is laidé in general, the study of the spectral properties
of the linearized equations around the limiting statesuigial. Another important point is to determine the
set of all possible limiting states. For instance, for egunat as simple as (10), the existence of a stationary
positive state is not obvious. Indeed, since the equatienset in unbounded domains, to allow propagation,
the lack of compactness creates additional complicatiBesent progress was made on these questions, for
equations more general than (10), and new qualitative amalille classification results were obtained.



2.3 Homogenization, stochastics and dynamics of the react-diffusion equations
2.3.1 Reaction-advection-diffusion equations and weak peirbations of dynamical systems

The question of the interplay of a strong advection and wééksibn is very natural and physically relevant,
and the subject has a long history. The passive scalar model

Gt +u- Vo =clg,

is probably one of the most studied PDESs in both mathematitdiphysical literature. One important direc-
tion of research focused on homogenization, where in aioditait (typically small diffusion) the solution
of a passive advection-diffusion equation converges tdwtisa of an effective diffusion equation. We refer
to [29] for more details and references. The correspondiagtion-diffusion models

bt Vo =06+ [(9),
and .
¢t+gu~V¢>:A¢+f(¢),

have been also extensively studied. Usually, the existehsech a limit requires additional assumptions on
the scaling ofu (see e.g. [30] for further references). The Freidlin-Welttheory [17, 18, 19, 20] studies
such problems ifR? and, for a class of flows, proves the convergence of solugistise flow strength tends to
infinity to solutions of an effective diffusion equation dretReeb graph of the stream-function. The graph,
essentially, is obtained by identifying all points on angeamline. The conditions on the flows for which
the procedure can be carried out are given in terms of cartairdegeneracy and growth assumptions on the
stream function. Recently this theory has been extendedltsa of three-dimensional flows, where the limit
problem is formulated on an “open book” rather on a graph. dyreamics is once again described in terms
of the slow variables with the fast variations averaged Anbther direction has been taken in [13] — instead
of trying to identify a limit problem, the question is whatle are most effective in mixing the solutions as
their strength tends to infinity. It turns out that with an eggriate and natural definition of mixing one can
provide a sharp classification of such “relaxation-enhagicilows.

2.3.2 Homogenization of Hamilton-Jacobi and reaction-dfusion equations

Homogenization of the Hamilton-Jacobi equations in a mheionedium has been well understood since
the unpublished preprint by Lions, Papanicolaou and Vaadiom the late 1980’s. The problem is to
homogenize the (possibly second-order) equation

ou., €
T §Au6 + H (t/e,x/e, Vue,w) =0,
and find an effective Hamilton-Jacobi problem
ou -
— +H =0.
5 +H(Vu)=0

Here H is a random Hamiltonian anéf is the deterministic Hamiltonian for the homogenized peofl
This problem (as well as a class of related homogenizati@stipns) has been recently studied in a series
of papers by P.-L. Lions and P. Souganidis, and independbgtE. Kosygina, F. Rezakhanlou and S.R.S.
Varadhan. A very interesting and challenging open probkeabtain non-trivial bounds for the homogenized
Hamiltonian — this problem remains open even in the periodge.

3 Presentation Highlights

3.1 Geometric methods for semilinear reaction-diffusion guations

X. Cabi, during his two-hour lecture, presented recent developsneam solutions of reaction-diffusion el-
liptic equations that are related to some classical regulise theory of minimal surfaces. Three results in
minimal surfaces theory and their semilinear analogues.



e Regularity of solutions of elliptic equations in low dimems. Inspired by related results for harmonic
maps, Cabir discussed semilinear analogues, particularly recenttselsy Capella and himself on
radial solutions of reaction-diffusion equations, inéhglthe well-known Gel'fand equation

—Au = e".

In low space dimensions, they lead to the boundedness darégwf radial solutions in a ball, and to
the instability of radial solutions in the whole space.

e Flatness of minimal graphs in low dimensiorihis item is related to the de Giorgi conjecture. Gabr
explained how bounded solutions in the whole space whiclmamgotone in one variable are always
local minimizers of the energy

E(u) = /B (%‘VUF — W(w)) dz.

This implies that, in low space dimensions, they are necigs$anctions of only one Euclidean vari-
able.

e Saddle solutionsGuided by this variational approach, Caltiscussed the following generalisation
of an earlier result by Schatzman [35]: /#*™, equation (2) has a solution whose symmetries are the
same as those of the Simons cone; this solution, which isuenig to translations, is called the saddle
solution of the Allen-Cahn equation; moreoveryif= 1, this solution is unstable. Cabexplained his
results results in this direction: instability of the saeldblutions in dimensior&n = 4 and 6, relying
on a delicate estimate of Modicauifsatisfies—-Au = W’ (u), W satisfying the standard assumptions,
then

1
§|Vu|2 < W(u).

Would these solutions be stable in higher dimensions - agjigested by the Bombieri-de Giorgi-Giusti
analysis, this would lead to a counterexample de Giorgi &xdnje.

0. Savin- who put an end to the non-existence part of the de Giorgiemtuje - discussed viscosity
solutions of fully nonlinear elliptic equations

F(D*u, Du,u,z) =0

for whichu = 0 is a solution. IfF' is smooth and uniformly elliptic only in a neighborhood oéthoints
(0,0,0,z), thenu is smooth in the interior ifju|| L~ is sufficiently small. This result - which uses difficult
Caffarelli-type estimates on second order derivativess-dgplications to the study of the regularity of free
boundary problems; in particular it can help to prove rediylavhen Lipschitz continuity and nondegeneracy
of the free boundary are known.

3.2 Free boundary problems and applications

A. Melletdiscussed delicate effects in the homogenization of frembary problems in two cases. First, he
considered the scalar thermo-diffusive model for flame agagion
z T—-1

1

Tt AT = 62(1 T)f((;v e )a
the paramete¥ accounting for possible heterogeneities in the mediumiétgsis phenomena occur: passing
to the limitine — 0, thend — 0 do not yield the same result as taking the limits in the reverger. Second,
he presented a model for the equilibrium of a sticky drop oouggh surface; this amounts to minimising a -
nonsmooth - functional of the characteristic function @ throp, with highly oscillating coefficients. There
is a homogenisation limit to this problem, namely the droplimost spherically spherical, and the limiting
radius may be computed from data.

J.-S. Guoreported on a two-point free boundary problem for a quaesirparabolic equation, mainly
arising in the study of the motion of interface moving withrvature. Global and non-global existence of



solutions, was discussed; non-global existence may oadyrtbrough a finite-time extinction process - in
the case of the mean curvature motion, this amounts to a edenplirve shortening. The asymptotic profile
at extinction, as well as convergence to a self-simlar @ofilere discussed.
The talk ofN. Ghoussoulsoncerned the nonlinear elliptic problem
Af(z)

TAU= T e

on a bounded domaif? of R" with Dirichlet boundary conditions. This equation modelsimple electro-
static Micro-Electromechanical System (MEMS) device ¢stirgy of a thin dielectric elastic membrane with
boundary supported atabove a rigid ground plate located-at. When a voltage —represented hereXsy

is applied, the membrane deflects towards the ground plate anap-through may occur when it exceeds a
certain critical value\* (pull-in voltage). This creates an instability which gigatffects the design of many
devices. The challenge is to estimatein terms of material properties of the membrane, which cafialbe-
cated with a spatially varying dielectric permittivity file f. When\ < \* (and whenm\ = A\* in dimension

N < 7), there is at least one steady state, while none is possible £~ A*. More refined properties of
steady states —such as regularity, stability, uniquemeskiplicity, energy estimates and comparison results—
are shown to depend on the dimension of the ambient spacenatheé permittivity profile.

3.3 Asymptotic models of reaction-diffusion systems; appiation to flame propaga-
tion models

Three talks were devoted to various aspects of existencegaalitative properties of waves in reaction-
diffusion systems. The talk d. Domelevareported some results on premixed flames models, where the
reactant (i.e. gas fuel) is provided through the vaposati liquid fuel droplets. The corresponding simplest
mathematical model consists in the usual thermo-diffusjgtem coupled to the equation for the vaporisation
of the droplets. Travelling wave profile exist, and asympsotvith respect to the activation energy reveal
new features: if the initial droplet radius is below somel&xpthreshold, the model is totally similar to the
classical thermo-diffusive model. Above the threshol@, ¢dbmbustion is driven by the droplet evaporation.
The main result in the talk oP. Gordonwas a singular perturbation approach to a detonation maodel i
porous media, derived by Sivashinsky; he presented unigpsarsults for the speed and wave profile when
the thermal diffusion coefficient goes to M. Haragusreported on holes in reaction-diffusion systems,
i.e.: almost planar interfaces for which the angles of therface at each point, relative to a fixed planar
interface, tend to zero at infinity. She applied dynamicatewms ideas - popularised under the name of
'spatial dynamics’, to convey the idea that one spatialalde is treated as a time - and showed that, in
isotropic reaction-diffusion systems, holes bifurcatarirstable planar pulsating fronts.

C.-M. Braunerpresented a model of flame front dynamics introduced by Ela®ordon and Sivashin-
sky, more tractable than the classical thermo-diffusivelehoand which can yield - by the same process as
in the thermo-diffusive model - a single integro-diffei@htquation (Q-S). If the flame front, supposed to
evolve in the spacér?, is a curve with equatiop = ®(¢, z), then

q)Q
O, + 770 — Dy + (I — Dyy) ' Pyy = 0.
This asymptotic equation has the same qualitative feansdbe Kuramoto-Sivashinsky (K-S) one; in par-
ticular, it can generate chaotic cellular dynamics. The eical simulations turn out to be quite convincing.

The modelling of spikes was addressed to in two talks. THeliglA. Doelmanfocussed on how to
derive, in a rigorous fashion, an ODE modelling the intacactaw between to repelling two-pulse, slowly
varying solutions of the a regularized Gierer-Meinharditeyn. This system is a heuristic model arising in
the description of chemical reactors and biological systeme of its versions writes

2U; = Uy — 2U + f(U)V?
Vi= e Vp -V +g(U)V?

wherez € Rt > 0,0 < ¢ < 1 is a small parameter, and functiofindg are smooth positive functions.
The method employed, based on normalisation group ideasjdhe applicable to many other situations.



M. Warddiscussed an optimization problem for the fundamentalnsi@geie \, of the Laplacian in a planar
simply-connected domain that contaiNssmall identically-shaped holes, each of radiug 1. A Neumann
boundary condition is imposed on the outer boundary of theado and a Dirichlet condition is imposed on
the boundary of each of the holes. He presented an asymexqtamsion fob\, in terms of certain properties
of the Neumann Green’s function for the Laplacian. This eigéue optimization problem is shown to
be closely related to the problem of determining equilibrivortex configurations in the Ginzburg-Landau
theory of superconductivity, and also closely related sghoblem of determining equilibrium locations of
spikes, to multi-dimensional reaction-diffusion systems

3.4 Complex propagation phenomena in reaction-diffusion guations

H. BerestyckiEHESS, France) reported first on some results with F. Ham@éINa Nadirashvili on pulsat-
ing travelling fronts for reaction-diffusion-advectioguations in general periodic framework. The qualitative
and quantitative role of the diffusion, advection and rieexterms was explained. Nonlinear propagation phe-
nomena in general unbounded domain&&f, for reaction-diffusion equations with Kolmogorov-Peisky-
Piskunov (KPP) type nonlinearities, were then discussedne@l domains were considered and various
definitions of the spreading speeds at large times for swigtivith compactly supported initial data were
given. The dependency of the spreading speeds on the ggorhéte domain was explained. Some a priori
bounds can be obtained for large classes of domains. Theota&sgerior domains was also explained in
detail. H. Berestycki finally reported on very recent workthwi. Hamel about further generalizations of the
usual notions of waves, fronts and propagation speed inyagameral setting. These new notions involve
uniform limits, with respect to the geodesic distance, taraify of hypersurfaces which are parametrized by
time.

J. Coville(CMM-Universidad de Chile, Chile) presented some work degdo the maximum principles
holding for some nonlocal diffusion operators and its aggilons to obtain qualitative behaviors of solutions
of some nonlinear problems with sliding methods. As in tlassical case, it can be shown that the nonlocal
diffusion satisfies a weak and a strong maximum principldgUeness and monotonicity of solutions of non-
linear equations are therefore expected as in the clagsisal J. Coville also presented a optimal condition
to have a strong maximum for operatafu := J x u — u.

S. LuckhaugqUniversity of Leipzig, Germany) reported on joint work tit.. Triolo [28], and with
A. De Masi and E. Presutti [14], about a hierarchy of scalimga population model for tumor growth.
Interacting particle systems modeling the competition edilthy and malignant cells were considered and
lateral contact inhibition and difference of mobility weeken into account in a lattice model. A two scale
hydrodynamic limit was derived. On longer time scales tHatgms are expected to converge to the tumor
growth governed by the eikonal equation. This last step énsibeling hierarchy has not yet been shown
starting from the original stochastic process.

H. Matano(University of Tokyo, Japan) reported on recent advancegénching vs. propagation phe-
nomena for bistable-type equations in heterogeneous madiame domains with non-periodic perforations,
propagation may be blocked by stationary solutions.

K.-l1. Nakamura(University of Electro-Communications, Japan) talkedwhmnt propagation phenom-
ena for a bistable reaction-diffusion equation in an infidylinder with periodic boundaries. By using the
first 3 terms of asymptotic expansions of the profile and tleedpf front solution, he constructed suitable
supersolutions and subsolutions to obtain upper and loaendis for the front speed when the diameter of
the cylinder is very small. These bounds enabled him to shatvspatial periodicity always slows down the
front propagation in bistable diffusive media.

P. Polacik (University of Minnesota, USA) presented a new result onrgsptic symmetry of positive
solutions of parabolic equations on nonsmooth bounded oh@mna key ingredient in the proof of this result
is a theorem on asymptotic positivity of solutions of lineguations with bounded measurable coefficients.
Some perspectives on this technical tool were given.

L. Rossi(Universita Roma I, Italy and EHESS, France) discussed owmigdized principal eigenaviue
of elliptic operators inRY and on some applications. He introduced two different gaizations of the
principal eigenvalue for linear elliptic operators in thbale space. He discussed how their signs determine
the existence and uniqueness of bounded solutions for aciatsd class of semilinear equations. The two
notions do not coincide in general and some inequalitiesdsen these eigenvalues in the case of self-adjoint,



10

one-dimensional and limit-periodic operators were detive

A. StevengMax Planck Institute, Leipzig, Germany) discussed ongpant equations for cellular align-
ment and aggregation and their parabolic limits. A wideagnehenomenon in moving microorganisms and
cells is their ability to orient themselves with respect &ele other and in dependence of chemical signals.
Kinetic models for this kind of movement were discussed chvltake into account a variety of evaluations of
the external chemical field and of the neigboring cells. Isecaf chemotaxis parabolic limit equations can
be derived, which relate the microscopic parameters to tierascopic ones, e.g. the so-called chemotactic
sensitivity.

A. Zlatos(University of Wisconsin, Madison, USA) discussed on sgiegof reaction in the presence of
strong cellular flows with gaps. He considered a reactidinglon-advection equation with an ignition-type
reaction term and a cellular flow with a periodic array of gape showed that if the initial flame is large
enough, it cannot be quenched by such flows, regardlessio&thength.

3.5 Homogenization, stochastics and dynamics of the react-diffusion equations

M. Freidlin (University of Maryland) presented two lectures on asyripfaroblems for stochastic processes
and RDE's which covered material from the introductory ldwghe state of the art of the field. He presented
some old and new results concerning averaging and largatdt&ws for stochastic processes. These results
allow, in particular, to describe motion of wavefronts foclass of reaction-advection-diffusion equations
and systems, as well as to consider some homogenizatioteprsifor reaction in incompressible fluid.

A. Kisele(University of Wisconsin) presented a talk on diffusion amicting in fluid flow. Enhancement
of diffusion by advection is a classical subject that haseaensively studied by both physists and mathe-
maticians. In this work, the authors considered enhanceofatiffusive mixing on a compact Riemannian
manifold by a fast incompressible flow. The main result isaghiescription of the class of flows that make
the deviation of the solution from its average arbitraritgadl in an arbitrarily short time, provided that the
flow amplitude is large enough. The necessary and sufficemdition on such flows is expressed naturally
in terms of the spectral properties of the dynamical systssoaated with the flow. In particular, they find
that weakly mixing flows always enhance the relaxation speditis sense. The proofs are based on a new
general criterion for the decay of the semigroup generayeal tlissipative operator of certain form. They
employ ideas from quantum dynamics, in particular the RABEbtem describing evolution of a quantum
state belonging to the continuous spectral subspace ofaimdtonian (and related to a theorem of Wiener
on Fourier transforms of measures).

E. Kosyging CUNY) presented her work on homogenization of Hamiltooeka-Bellman equations with
respect to time-space shifts in a stationary ergodic medi@onsider a family{u.(¢,z,w)}, € > 0, of
solutions of the final value problem

Ou,
ot

where the time-space dependence of the HamiltoHian x, p, w) is realized through the shifts in a stationary
ergodic random medium. For Hamiltonians, which are conmexand satisfy certain growth and regularity
conditions, she shows the almost sure locally uniform iretand space convergencew{t, z,w) ase — 0

to the solutioru(t, ) of a deterministic “effective” equation

+ gAu6 + H (t/e,x/e, Vue,w) =0, u(T,z,w)="U(x),

% + H(Vu) =0, u(T,z)="U(z).
The averaged HamiltoniaH (p) is given by a minimax formula. This is a joint work with S.R\&radhan.

J. Nolen(University of Texas, Austin) discussed reaction diffusfoonts in temporally inhomogeneous
flows. He considered the propagation of fronts that arisefsgalar, reaction-advection-diffusion models
with the Kolmogorov-Petrovsky-Piskunov (KPP) nonlingariFor temporally random flows with a shear
structure, he established an extension of the well-knowratianal representation for the front speed, a
nonrandom constant. Also, he used this variational reptaten to analytically bound and numerically
compute the speed. The analysis makes use of large degiastimates for the related diffusion process.
The variational principle is expressed in terms of the ppakLyapunov exponent of an auxiliary evolution
problem. This is a joint work with J. Xin [33].
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A. Novikov(Pennsylvania State University) considered a homogeoirapproach to large-eddy sim-
ulation of incompressible fluids. In the development of éaggldy simulation one makes two primary as-
sumptions. The first is that a turbulent flow can be categdrimea hierarchy of lengthscales. The second
assumption states that the small scales have universabntiesy characterized by, e.g. a spectral power
law. This motivated a number of physical models that attetm@tccount for the presence of small scales
by suitably modifying the corresponding partial differi@htquations (PDE), the Navier-Stokes equations.
Homogenization theory addresses rigorously the issue dffination of PDE in the presence of small scales.
The goal of this talk was to apply homogenization methodsE8 imodeling of fluid flows.

H. Owhadi(Caltech) talked about homogenization of parabolic eguatiwith a continuum of space
and time scales. He addressed the issue of homogenizatimearf divergence form parabolic operators in
situations where no ergodicity and no scale separatiomria tir space are available. Namely, he considered
divergence form linear parabolic operators{inCc R™ with L>(Q2 x (0,T))-coefficients. It appears that
the inverse operator maps the unit ball/&f(2 x (0, 7)) into a space of functions which at small (time and
space) scales are closehft -norm to a functional space of dimensianlt follows that once one has solved
these equations at leasttimes it is possible to homogenize them both in space aniie, treducing the
number of operations counts necessary to obtain furthatisnk. In practice they show that under a Cordes
type condition that the first order time derivatives and seoorder space derivatives of the solution of these
operators with respect to harmonic coordinates afe®itinstead off ~! with Euclidean coordinates). If the
medium is time independent then it is sufficient to salviémes the associated elliptic equation in order to
homogenize the parabolic equation. (This is a joint workii Zhang.)

J. Quaste(University of Toronto) discussed the effect of noise on KiReReling fronts. He and co-authors
study the effect of small additive Fisher-Wright noise oa sipeed of traveling fronts in the KPP equation. It
had been observed by physicists in the late 90’s that thetéffeinusually large and Brunet and Derrida have
made some very precise conjectures. Quastel describeddbfs pf some of these. This is joint work with
Carl Mueller (Rochester) and Leonid Mytnik (Technion).

M. Soner(Koc University) talked about backward stochastic difféi@ equations and fully nonlinear
PDE’s. In the early 90’s Peng and Pardoux discovered a sgrigbnnection between semilinear parabolic
PDE'’s and backward stochastic differential equations (B&Dshort). This connection and the BSDE’s have
been extensively studied in the last decade and a deep tbEBSDESs have been developed. However, the
PDE'’s that are linked to BSDE’s are necessarily semilinegioint work with Patrick Cheredito (Princeton)
Nizar Touzi (CREST, Paris), Nic Victoir (Oxford), Soner erntled the theory of BSDE's by adding an equa-
tion for the second order term, which we call 2BSDE in shohroligh this extension they are able to show
that all fully nonlinear, parabolic equations can be repnésd via 2BSDE’s. He described this theory and
possible numerical implications for the fully nonlinear PB.

P. SouganidigUniversity of Texas) presented two lectures on homogéioizan random environments
and applications to front propagation. In particular, headéed recent developments in the theory of ho-
mogenization for fully nonlinear first- and second-ordee i stationary ergodic media in his works with
L. Caffarelli and P.-L. Lions. He also considered applioasi to the theory of front propagation in random
environments.

3.6 Gizburg-Landau vortices

A. Aftalion(Universite Paris VI) presented her work on vortex latticefast rotating Bose Einstein conden-
sates. She described experiments on fast rotating BosteBieendensates which display vortex lattices: the
lattice is almost triangular with a slight distortion on théges. The mathematical description can be made
with a complex valued wave function minimizing an energytrieged to the lowest Landau level or Fock-
Bargmann space. Using some structures associated withgace, she studies the distribution of zeroes of
the minimizer.

S. SerfatyNYU University) gave two lectures on her work on the dynasnié the Ginzburg-Landau
vortices. She described the known results on vortex colisand presented her recent work [36] in this area,
extending vortex dynamics past the blow-up time.
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4 Outcome of the Meeting

The meeting provded an opportunity for researchers in varsub-areas of the whole domain of elliptic and
parabolic partial differential equations to interact waétich other. The talks have been devoted to problems
ranging from purely mathematical questions such as De Giorgecture to probabilitistic questions, such as
stochastic homogenization, and to applied areas inclugtngbustion and biology. Nevertheless, the group
had a strong core of common interests which held the mee@ingooherent and of a high quality. Numerous
frutiful discussions have taken place, across the traditiarea boundaries. Overall, we believe that the
participants found the conference to be very successfutstimdilative for their research.
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