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This meeting was a great success and a stimulating beginning to the
2005–06 academic year. Some 37 participants attended from top institutions
in Canada, the USA, Europe, Korea, Hong Kong, and Japan. As anticipated
in its proposal, the workshop covered many of the topics where theoretical
physics has most greatly influenced algebraic geometry in recent years.

Gromov-Witten theory, for example, which originated as a quantum field
theory governing the propagation of loops or strings on a Ricci-flat space-
time, has become a mathematical theory of the enumerative geometry of
algebraic curves on projective varieties. It was discussed in many of the
lectures, such as those of Conan Leung and Jim Bryan.

A related topic from physics was discussed in two related lectures by
Lothar Göttsche and Hiraku Nakajima: the Nekrasov partition function.
This partition function can be regarded, thoroughly physically, as a partition
function in an N = 2 supersymmetric quantum field theory, but also has
mathematical interpretations both in terms of Gromov-Witten invariants and
in terms of their analogues and forerunners, the Donaldson invariants of real
4-dimensional manifolds.

Mirror symmetry provides another example of an explicitly physical topic
discussed at the meeting. Mirror symmetry began as a duality between
quantum field theories, and was reinterpreted in physics as the “T-duality”
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of Strominger-Yau-Zaslow, in which string theory on a torus of large radius
is dual to that on a torus of small radius. Mirror symmetry has received
many mathematical interpretations:

• in terms of duality of polytopes by Victor Batyrev and Lev Borisov,

• the “homological mirror symmetry” of Maxim Kontsevich involving de-
rived categories of sheaves and related to the Fourier-Mukai transform,
and

• the torus fibrations inspired by Strominger, S.-T. Yau, and Zaslow.

These were represented in the conference by the lectures of Batyrev, Hori
and Mark Gross, respectively.

The principal topic of Kentaro Hori’s lecture was, however, different, and
perhaps more surprising to most participants at the meeting. As one of the
few card-carrying physicists present, Hori was able to inform the mathemati-
cians that physics is able to shed light on matrix factorizations of polynomials
— certainly a new and intriguing direction that we are likely to hear more
of in the future.

But there were also topics of a more purely mathematical nature. Izzet
Coskun and Bumsig Kim gave talks on moduli spaces of curves, for exam-
ple, a more “classical” topic as it goes back in some sense to the nineteenth
century. In its modern incarnation, interest dates to the late 1960’s, long
before the resurgence of physicists’ interest in algebraic geometry. Yet it is
also clearly a subject that has been revivified and reanimated by the indirect
influence of physics. Coskun’s talk made this clear: stable curves can be bet-
ter understood using stable maps, which were only introduced by Kontsevich
thanks to the motivation of physics.

Another “classical” topic which kept cropping up was that of K3 surfaces,
which were discussed in (at least) the lectures of Leung, Gross, and Bertram.
There was no explicit reference to physics in any of these talks, but the
indirect influence was clear: these K3 surfaces are (rather elaborate) toy
models of Calabi-Yau threefolds, proposed by string theorists to constitute
the missing dimensions of space-time.
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Some other recurring themes, though less classical, were also purely math-
ematical. Derived categories of coherent sheaves made an appearance several
times, in the lectures of Aaron Bertram, Kentaro Hori, and Alistair Craw,
for example. These certainly play a role in physics, as is evident in the work
of Michael Douglas, and this was a motivation for Bertram’s construction,
but the elementary transformations that he described in holomorphic sym-
plectic geometry had a purely mathematical elegance. Craw explained how
the study of derived categories could be led in another direction — towards
combinatorics — by applying them to the theory of toric varieties.

Another contemporary mathematical theory that was often invoked at the
meeting was that of orbifolds or Deligne-Mumford stacks. These are now un-
derstood to have a quantum cohomology theory analogous to that of smooth
varieties (work due to a number of researchers), and their Gromov-Witten
theory, K-theory, and Hochshild cohomology were discussed by Charles Cad-
man, Takashi Kimura, and Andrei Caldararu respectively.

The concept of topological quantum field theory or TQFT should not be
overlooked either. This is not really part of physics; it is more a mathematical
formalism, put forward in around 1990 by Michael Atiyah and Graeme Segal,
inspired by such physicists as Edward Witten and Robbert Dijkgraaf. But it
simplifies and systematizes many calculations in algebraic geometry inspired
by physics, any time we want to calculate some invariant on a moduli space
by degenerating or cutting up the space on which it is based into smaller
constituents (for example, by cutting up a Riemann surface into pairs of
pants, interpretable as thrice-punctured spheres). It was discussed, for the
enumerative geometry of spaces of admissible covers, in an attractive lecture
by Renzo Cavalieri, and alluded to in the talks by Leung and Bryan as well.

There was much informal discussion of all of these topics, and more, at
the meeting. The number of formal lectures was intentionally kept small —
only sixteen — to provide ample time for informal discussions. However, each
of the sixteen speakers was given a full 75 minutes to speak, which ensured
an in-depth treatment in each lecture. The topics discussed in the lectures
are briefly summarized below.

Conan Leung first reviewed the conjectural Yau-Zaslow formula, which
expresses the generating function on the number of curves in a K3 surface as
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a quasi-modular form.

Then he explained his recent joint work with Junho Lee on the proof of
this formula for the index 2 case, generalizing previous work with Jim Bryan
for the index 1 case.

The technique employed was the gluing formula for Gromov-Witten in-
variants.

Lothar Göttsche spoke on his recent work on instanton counting, Don-
aldson invariants, and line bundles on moduli spaces. (This is joint work with
Hiraku Nakajima and Kota Yoshioka.) They computed the Donaldson invari-
ants of a rational surface in terms of the aforementioned Nekrasov partition
function, which can be viewed as a generating function for the Donaldson
invariants of the affine plane. For a line bundle L on the rational surface X,
they computed the holomorphic Euler characteristic

χ(MH
X (c1, c2),O(µ(L)))

of associated line bundles on the moduli space of H-stable rank 2 bundles on
X. Using the Nekrasov conjecture, this yielded explicit generating functions
for the Donaldson invariants and the holomorphic Euler characteristics in
terms of modular forms and elliptic functions.

Reporting on joint work with Bernd Siebert, Mark Gross described a
“nonlinear Mumford construction,” by which he menat the following. Mum-
ford’s construction produces explicit degenerations of abelian varieties, start-
ing with data of a polyhedral decomposition of a real torus and a (multi-
valued) convex piecewise linear function on the torus. This can be general-
ized by replacing the torus with a more general integral affine manifold with
singularities. From these data, one can easily produce the central fiber of the
degeneration, so the challenge is to smooth this fiber.

Gross showed how Kontsevich and Soibelman’s approach translates natu-
rally into this setting, producing explicit smoothings of K3 surfaces. Tropical
rational curves emerged naturally out of his construction.

Aaron Bertram spoke about new moduli associated to a K3 surface,
studied in joint work with Daniele Arcara. For a K3 surface S whose Picard
group is generated by a divisor class C of self-intersection 2g−2, he considered
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the “old” moduli space M of stable coherent sheaves on S with invariants
ch0 = 0, ch1 = H, ch2 = g − 1 agreeing with those of the push-forward of
a sheaf on C of rank 1 and degree 2g − 2. This is a smooth holomorphic-
symplectic manifold.

The object of Bertram’s talk was to exhibit a sequence of moduli spaces

M ↔ M ′
↔ M ′′

↔ · · ·

that are linked by Mukai flops over projective bundles over products of
Hilbert schemes of points on S. These new moduli spaces are not (at least
in any manifest way) moduli spaces of coherent sheaves on S, but rather are
moduli space of stable objects in the derived category of coherent sheaves
on S under a family of stability conditions motivated by physics. Bertram
argued that this sequence of flops was the natural generalization of Thaddeus
flips to K3 surfaces.

Kentaro Hori reported on his work on matrix factorizations and com-
plexes of vector bundles. Physics shows the equivalence of certain aspects of
matrix factorizations of, say, a degree 5 polynomial in 5 variables

G(x1, . . . , x5),

and complexes of coherent sheaves of the quintic hypersurface G(x1, . . . , x5) =
0 in complex projective 4-space. Recently D. Orlov proved the equivalence of
the category of matrix factorizations of G and the bounded derived category
of coherent sheaves on the quintic.

In his talk, Hori described these equivalences and argued that they are
the “right ones” for physics. He suggested that a proper understanding
of the physics may have many applications, for example, to stability or to
homological mirror symmetry.

Victor Batyrev also spoke about mirror symmetry for Calabi-Yau three-
folds, but discussed a subtle feature not previously studied: their integral co-
homology. For Calabi-Yau varieties X and Y of dimension d that are mirror
to each other, mirror symmetry predicts that the Hodge numbers of X and
Y are related by the equality

hp,q(X) = hd−p,q(Y ).
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Batyrev’s main interest was to understand the relationship between the tor-
sion in their integral cohomology rings. For d = 3, he observed that the
torsion in H2 and H3 must be exchanged by mirror symmetry. His verifica-
tion of this statement for Calabi-Yau complete intersections in toric varieties
reduced to an explicit computation of the fundamental group and the Brauer
group.

Izzet Coskun gave a lecture about the cones of ample and effective
divisors on Kontsevich moduli spaces. The cones of ample and effective
divisors are among the most important invariants associated to any variety.
But the study of these cones for moduli spaces is especially important. For
example, in a celebrated series of papers in the 1980’s, Harris, Mumford,
and Eisenbud were able to prove that the moduli space of stable curves is of
general type in genus greater than 23 by studying these cones.

In recent work with Joe Harris and Jason Starr, Coskun reduced the
computation of the ample cone of the Kontsevich space of (genus zero) stable
maps to projective space to a standard conjecture about curves. They also
determined the stable effective cone of the Kontsevich moduli spaces. He
described these results in his talk and discussed applications to the theory of
rational connectivity and the divisor theory of the moduli spaces of pointed
stable curves. For example, similar techniques have allowed him to determine
the effective cone of the moduli space of pointed (genus zero) stable curves,
modulo permutations.

Hiraku Nakajima discussed his joint work with Kota Yoshioka on in-
stanton counting. This refers to the computation of Nekrasov’s deformed par-
tition functions of N = 2 supersymmetric Yang-Mills theories by integrating
in the equivariant cohomology or Grothendieck groups of instanton moduli
spaces over four-dimensional Euclidean space, which are quiver varieties as-
sociated with the Jordan quiver. These partition functions are analogues of
the Donaldson invariants, and equal to the Gromov-Wiotten invariants of
certain noncompact Calabi-Yau threefolds. Nakajima reviewed the recent
results on these functions.

Alastair Craw reported on work about quivers and exceptional collec-
tions for projective toric manifolds. He described how certain collections of
line bundles on a projective toric manifold can be used to reconstruct that
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manifold as a moduli space of quiver representations. To put it another
way, he introduced new quiver gauge theory constructions of projective toric
manifolds. His condition on the line bundles was remarkably weak, and in
particular holds for nice “full strong exceptional collections” (if they exist)
that describe the derived category of coherent sheaves. Indeed, Craw’s pro-
gram leads to new examples of such collections. (This was joint work with
Greg Smith.)

Harry Tamvakis spoke about the Gromov-Witten invariants of isotropic
Grassmannians. He has studied them in joint work with Anders Buch and
Andrew Kresch. For a homogeneous space which is the quotient of a classi-
cal Lie group by a maximal parabolic subgroup, Tamvakis explained a series
of results which show that the three-point genus-zero Gromov-Witten invari-
ants can be equated with, and hence derived from, classical triple intersection
numbers on related homogeneous spaces. He applied this principle to prove
structure theorems for the small quantum cohomology of these homogeneous
spaces, which give new results in the case of a Grassmannian parametrizing
non-maximal isotropic subspaces of a vector space equipped with a symplec-
tic or orthogonal form. Buch was also a participant in the workshop, and
explained many technical aspects of this work informally in the evenings.

In his lecture on “Hurwitz-Hodge integrals and the crepant resolution
conjecture,” Jim Bryan stated the following. A well-known principle from
physics asserts that string theory on an orbifold is equivalent to string theory
on any crepant resolution of its coarse moduli space. In mathematics, this
can be stated as saying that the Gromov-Witten potentials for the orbifold
and the crepant resolution contain equivalent information: that is, one can
be transformed to another by an appropriate change of variables. Bryan
illustrated this in some examples, showing how it leads to interesting new
formulas for integrals of Hodge classes over Hurwitz schemes. The lecture
touched on important work joint with Rahul Pandharipande, Andrei Ok-
ounkov, Tom Graber, Dagan Karp, and others.

Bumsig Kim spoke about the moduli space of rational plane curves with
a unique irreducible singular point. He showed that this moduli space can
be decomposed as a union of irreducible smooth rational varieties of varying
dimensions. He showed how to compute the degree of the largest component
with fixed tangent line at the singular point. He was reporting on joint work
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with Dosang Joe and Hyungju Park.

Andrei Caldararu gave a stimulating lecture entitled “Towards com-
puting the Hochschild cohomology ring of orbifolds,” in which he attempted
to explain the ingredients that should go into proving the generalization of
Kontsevich’s Theorem for complex manifolds to orbifolds. More explicitly, he
went over the proof of Kontsevich’s Theorem and pointed out what changes
have to be made when dealing with orbifolds. For example, the inertial
orbifold appears in a natural way in the course of the argument.

Takashi Kimura described the latest results from his long-standing col-
laboration with Tyler Jarvis. They apply to the setting of a global quotient,
that is, a smooth projective variety equipped with the action of a finite group
G. To these data, they have associated a G-equivariant Frobenius algebra,
which they call the “stringy K-theory,” whose G-coinvariants yield the orb-
ifold K-theory of the quotient. They then introduced a stringy Chern charac-
ter, which is a ring isomorphism from stringy K-theory to its cohomological
counterpart. It contains “corrections” to the ordinary Chern character. The
proof of the isomorphism follows from a new, simple reformulation of the rel-
evant obstruction bundle, which does not involve stable maps. Hence their
work significantly simplifies earlier work in simpler situations.

Renzo Cavalieri spoke about his doctoral work which gave the intersec-
tion numbers on moduli spaces of admisible covers the structure of a topo-
logical quantum field theory. More precisely, he explained how to construct
a two-level weighted topological quantum field theory whose structure coef-
ficents are equivariant intersection numbers on moduli spaces of admissible
covers. Such a structure is parallel (and related, albeit somewhat mysteri-
ously) to the local Gromov-Witten theory of curves of Jim Bryan and Rahul
Pandharipande.

Cavalieri described the explicit computation of the theory using tech-
niques of localization on moduli spaces of admissible covers of a parametrized
projective line. The Frobenius algebras he obtained were one parameter de-
formations of the class algebra of the symmetric group. In certain special
cases he could produce explicit closed formulas for such deformations in terms
of the representation theory of the symmetric group.

Charles Cadman also described the work of his doctoral thesis, which
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uses high technology from the theory of stable maps to Deligne-Mumford
stacks to solve a thoroughly classical problem, namely the enumeration of
rational plane curves with tangency conditions to a fixed cubic. His key idea
was to consider what he calls the “stack of nth roots” associated to a scheme
X with a Cartier divisor D: that is, the stack whose objects are morphisms
to X together with sections of an nth root of the pullback of the line bundle
O(D), whose nth powers correspond to the natural section of O(D). This is
a Deligne-Mumford stack whose coarse moduli space is X, and (for smooth
X and D) stable maps to this stack correspond to maps to X with tangencies
of order n along D. Recursions solving the enumerative problem can then be
obtained, following Kontsevich, by applying the Witten-Dijkgraaf-Verlinde-
Verlinde equations in the quantum cohomology of the stack of nth roots.
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