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Overview and Introduction to the Subject

This workshop focused on two relatively recent developments in homotopy theory: homotopical localiza-
tion, and the calculus of homotopy functors. An effort was made to promote the, as of yet, sparsely explored
interrelationship between these two subjects. To develop asense of purpose and perspective, let us men-
tion a few evolutionary highlights of algebraic topology/homotopy theory, and observe how its concerns and
viewpoints progress over time (we use present day terminology throughout):

1. Early activity in the subject centered around combinatorial invariants of polyhydra, such as the Euler
characteristic, Betti numbers, etc. These were adequate toclassify the members of certain families of
spaces, such as connected surfaces which are compact and without boundary. More generally, they
provided a tool for distinguishing spaces.

2. Next followed a functorial approach to invariants for thedisconnectivities in general topological spaces:
homotopy groups, various species of (co-)homology theories, etc. As a ‘biproduct’ the homotopy
invariance of the earlier invariants was obtained.

3. The next evolutionary layer came with the notion of a homotopy functor (one which preserves ho-
motopy equivalences). This provided a unifying platform for all of the specific and geometrically
motivated constructs which characterized the previous stage. In addition, it set the stage for a system-
atic comparison of such functors; e.g. which functors detect a homotopy theoretical property in a given
space? which homotopy functor factors through another? etc.

4. With homotopy functors in the center of view, the need for tools to study such resulted in the study of
functors on the category of homotopy functors.

Each step further in this development was motivated by the prospect of gaining insight in earlier steps. As
history testifies, each step has been successful in this regard.

How do homotopical localization and the calculus of homotopy functors fit in? Homotopy localization of
spaces or spectra generates homotopy functors with certainpredictable properties. Such functors fit naturally
into framework of 3 above. Building on ideas and the groundwork provided by the works of Adams [1],
Bousfield [5, 6], Bousfield-Kan [9], Sullivan [23], and others a flurry of activity over the 1990’s culminated
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1 MATHEMATICAL BACKGROUND 2

in a fully developed theory which permits implementations in suitable model categories; see the works of
Farjoun [13] and Hirschhorn [17].

The calculus of homotopy functors belongs to level 4. above.It aims to study a homotopy functorF by
a tower of homotopy functors

· · · → TnF −→ Tn−1F → · · · → T1F → T0F.

This tower is strikingly analogous with Taylor polynomial approximations of a smooth function as we’ll
describe below.

At this point we’d like to describe homotopical localization and the Goodwillie Calculus in more detail.

1 Mathematical Background

We will be working in categories where it is possible to do homotopy theory or something related to homotopy
theory. The most basic example of such a category is the category T of topological spaces.

There are many variations on this category, some of which areconsidered in Goodwillie’s work, and some
of which have been considered in the work of other authors. One can do homotopy theory in the category
of topological spaces with distinguished basepoints,T∗ (where all functions must preserve the basepoint),
topological spacesoversome fixed base spaceY , and the category of spectra,S. We will useT∗ in the suc-
ceeding and take this opportunity to describe three basic constructions. LetX be a space with a distinguished
basepointx0, andI be the unit interval. Thesuspensionof X is

ΣX = (I × X)/({0, 1} × X ∪ I × {x0}).

Thebased loop spaceonX is
ΩX = Maps((I, {0, 1}), (X, x0))

in other words, all continuous maps from the interval toX which take the endpoints of the interval to the
basepoint. Thesmash productof X with Y is

X ∧ Y = (X × Y )/({x0 × Y ∪ X × {y0}}).

SinceS features prominently, and may not be familiar, we also describe it briefly, taking liberties with
the definition for the sake of conciseness. Aspectrum may be thought of as being a sequence of topological
spaces with basepoints

{X0, X1, . . . }

together with continuous functions (preserving basepoints)

siΣXi → Xi+1

which are nice inclusions.
It is not important to elaborate the details of the morphisms(the functions) inS, these being somewhat

technical but to note the most germane properties of this category. There is a functor

S∞ : T∗ → S

which takes a spaceX with distinguished basepoint to the spectrum

{X, ΣX, Σ2X . . . }.

In S, the functionΣ(·) is invertible, and fibers of maps (equivalent to) desuspensions of cofibers.
There is also a smash product inS which is also denoted∧ and which is determined by wanting

S∞(X ∧ Y ) = S∞(X) ∧ S∞(Y ).

∧ in S plays a role similar to⊗ in a category of modules.
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Our interest inS arises because any functor

X 7→ h∗(X)

from T∗ to graded groups which satisfies the axioms of a homology theory is actually given by

X 7→ π∗(S
∞(X) ∧ H)

for an appropriately chosen spectrumH. So spectra represent homology theories.

2 Goodwillie’s Calculus

We begin by considering a functor
F : T → T

such thatF preserves weak homotopy equivalences. For purposes of simplicity, we also assume thatF (∗)
is contractible (F is reduced). There is a special class of such functors which are referred to asexcisive. An
excisive functor is a functor which takes homotopy pushout squares to homotopy pullback squares. Loosely
this condition can be though of as taking cofiber sequences ofspaces to fiber sequences of spaces. In other
words, ifF is excisive, then the functor

X 7→ π∗(F (X))

satisfies the axioms of ahomology theory. (It is a consequence as discussed above that linear functors are
represented by spectra; in fact an excisive reduced functorfrom based spaces is represented by the spectrum
F (S0).)

One reason excisive functors have a special role is that in many cases homology theories are computable,
so that even if we can’t always identifyF (X) precisely, we can at least compute its homotopy groups.
Goodwillie considers excisive functors to be analogous to linear functions in single variable calculus.

One way to think about the beginning of the functor calculus is to imagine searching for an algorithm
which allows one to approximate an arbitrary (reduced homotopy) functor by an excisive one. In ordinary
calculus, the analogy is to finding a linear approximation toan arbitrary function.

Goodwillie solves this problem in [14]. Given an arbitrary reduced homotopy functorF , Goodwillie
gives an algorithm for computing a linear (excisive) functor

P1F : T → T

which comes with a natural transformationη : F → P1F which is initial among natural transformations
from F to linear functors. That is, given any natural transformation ν : F → G whereG is linear,ν factors
throughη. With the restrictions we’ve given, it is easy to describe the algorithm for makingP1F . With the
restrictions we’ve given, there is a natural map

F (X) → ΩF (ΣX).

The target functor (as a functor ofX) is also a reduced homotopy functor, so the construction canbe iterated.
ThenP1F is (loosely) the limit of

F (X) → ΩF (ΣX) → Ω2F (Σ2X) → . . .

The notion of a linear approximation to a functor turns out tobe just the beginning of an analogy between
Taylor polynomials and Taylor series. Goodwillie calls an excisive functor is “1-excisive.” Goodwillie gives
a definition ofn-excisive: roughly speaking, a functor isn-excisive if it takes anyn + 1-cubes of spaces in
which every square is a pushout to somen + 1 cubes of spaces in which the initial corner is the pullback of
the rest of the cube. From this definition it is obvious that itis easier to ben+1 excisive thann excisive (that
is, n-excisive functors are automaticallyn + 1-excisive).

For each (reduced, homotopy) functorF , there is ann-excisive approximationPnF and a natural trans-
formationηn : F → PnF which is initial among natural transformations fromF to n-excisive functors.
Just as1-excisive functors are to be thought of as analogous to linear functions,n-excisive functors should
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be thought of as analogous to polynomial functions of degreen. SoPnF can be though of as the degreen
polynomial approximation toF . Becausen − 1-excisive impliesn-excisive, the universal property of the
natural transformation

ηn : F → PnF

implies there is a functorπn : PnF → Pn−1F so that

πn ◦ ηn = ηn−1.

There are two important structural observations to make here. First the natural transformationsπn give us
a tower of functors{PnF} and the natural transformationηn give compatible maps fromF into this tower.
One can ask what the relationship is betweenF and the homotopy inverse limit of this tower. In particular,
one hopes that for any particular spaceX, F is analyticatX (that is,F (X) = lim(PnF )(X)).

Second, recall that linear functors are described by spectra. Polynomial functors of degree greater than
1 don’t have such a simple description, but for eachn, the fiber of the natural transformationπn : PnF →
Pn−1F is completely describe by a spectrum with thenth symmetric group,Σn, acting on it, and techniques
for determining what this spectrum actually is are described in [16]. This functor should be though of as
a homogenous functor of degreen. So while excisive functors of degreen may be somewhat complicated,
they are described by a finite number of extensions of functors which are themselves determined by equiv-
ariant spectra. In principle, this leads to descriptions of(analytic) functors from spaces to spaces in terms of
equivariant stable data together with extension information.

This is already interesting in the case whereF is the identity functor. In this case the functor is, of course,
understood, but because homotopy groups are extremely difficult to compute for most topological spaces, the
homotopy groups of the functor evaluated at most interesting spaces are not understood. The homogenous
layers are discussed in [16] and [19], and the entire tower isdiscussed in [2]. This work is further developed
for particular values of the spaceX in[3] where the homotopy groups of the spaces in the Goodwillie tower
shed light on the homotopy groups ofX.

3 Homotopical localization

Homotopical localization has its roots in algebraic localization. Serre introducedC-theory as a tool that
allowed him to prove local versions of classical theorems like the Hurewicz theorem. Some years later the
implicit ideas are developed in different directions by Quillen and Sullivan.

Quillen, in [22], gives a development of localization in “model categories”. At its most fundamental, this
gives conditions where a new category can be constructed from an old category by “inverting” some collection
of morphisms which are to be thought of as equivalences (in the new category). A specific and commonly
used example is to take the old category to be the category of topological spaces and the equivalences to
be maps which induce isomorphisms onH∗(−;Q). (More examples can be easily produced by substituting
other coefficients forQ.)

Sullivan, in [23] takes a different approach. He describes for a set of primesS and sufficiently nice CW
complexesX a constructionXS which “inverts” primes inS. That is, ifX → Y is a map which induces an
isomorphism inH∗(−;Z[S−1]), then the induced mapXS → YS will be an equivalence.

Bousfield in [5] generalized these ideas considerably. Ahomology theoryE∗(−) is a homotopy invariant
functor from spaces to graded abelian groups which satisfiesthe usual properties of singular homology except
that if∗ represents the one point space, the graded groupE∗(∗) is not required to be concentrated in dimension
0. Given such a homology theory, Bousfield constructs a functor LE from the category of spaces to itself
which he callsE-localization, and a natural transformation,η from the identity functor toE. E-localization
is determined up to homotopy by the following two properties:

1. LEX is E-local.

2. The natural transformation evaluated atX gives a mapX → LEX which is initial (up to homotopy)
among maps fromX to E-local spaces.

Here byY is E-local, we mean that ifE∗(A) = E∗(∗), then[A, Y ] = ∗, the one point set. So all maps from
A to Y are homotopic to the constant map.
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Fundamental to the construction of Bousfield’s localization functors are the class of maps which are
to localize to homotopy equivalences. Bousfield ([8]), Dror([12]) and other authors study more general
localizations based on collections of maps which are to become equivalences.

There is a sequence of homology theories related to cobordism known as Johnson-Wilson theories

E(0)∗(−) = H∗(−;Q), E(1)∗(−), E(2)∗(−), . . .

(hereE(1)∗(−) is closely related to complexK-theory). Since work of Morava as expanded by Miller,
Ravenel and Wilson [20] and the celebrated Nilpotence Theorem [11, 18] localization with respect to these
theories has become one of the central organizing principles of stable homotopy, and to a lesser extent,
unstable homotopy. Localization with respect to the homology theoryE(n) is generally denotedLn(−), and
this family of localizations are referred to as the chromatic localizations.

4 Scope of workshop

The workshop was intended to center on areas where the calculus of functors meets homotopical localizations.
Let L be a homotopical localization functor on some category.L is guaranteed to come with an important

structure; a natural transformation from the identity functor toL:

ηX : X → L(X)

such that
ηLX : LX → L(LX)

is a homotopy equivalence (L is homotopy idempotent).
This is also a property satisfied by the functors in Goodwillie’s Taylor Tower when interpreted suitably.

Consider the category whose objects are homotopy functors from (for example)T to T . ThenPn applied to
this category of functors is idempotent and comes with a natural transformation from the identity functor. In
Dwyer’s presentation at the workshop, he described how to producePn as a homotopical localization.

One of the more fascinating results in these area is that of Arone and Mahowald in [3]. This paper analyzes
the Goodwillie tower of the identity functor from spaces to spaces. One of the main results is that for certain
spaces (at least for spheres) the layers in the Goodwillie tower for the identity functor are essentially the
chromatic localizations,Ln. While the implications of this fact are far from completelyunderstood, Michael
Ching’s work presented at this workshop displays these sameobjects (the derivatives of the identity functor)
arising as the spaces in an operad.

A second place where an interaction between chromatic localizations and Goodwillie’s techniques was
demonstrated at this meeting was in Kuhn’s report on his work. If X is a spectrum, it determines a certain
infinite loop space (writtenΩ∞X). Kuhn is able to use a number of techniques including Goodwillie calculus
to computeE∗(Ω

∞X) in terms ofE∗(X) for homology theoriesE∗(−) related to chromatic localizations.
While initially the calculus of homotopy functors was designed for functors on spaces or spectra, the

theory has in the mean time found parallel instances in a number of other categories, such as chain complexes,
vector spaces and the category of open subsets of a manifold.This begs for an eventual full bodied framework
for the calculus of homotopy functors on suitable model categories.

There were two main goals to this conference. First, we sought to introduce researchers in the calculus
of functors or homotopical localization to each other’s subject. Second, we sought to develop an overlap
of these two research areas by exploring current research inboth areas. Towards the first objective, Tom
Goodwillie provided a series of expository lectures which laid out the foundations of the calculus of functors.
A complementary series of lectures were provided by Bill Dwyer, who gave an excellent introduction to
localizations and explained how to construct Goodwillie’sTaylor stages as homotopy localizations within a
suitable category of diagrams of spaces as mentioned above.These lectures laid the groundwork for what
followed.

Outcome of the meeting
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While it is unfair to categorize the contributions of the participants of this conference into such a short
list of topics, it is beneficial to enumerate those topics which form current trends in the calculus of functors
and homotopical localizations. What follows is a short compilation of those topics which pertain most to the
intended goals of this meeting.

• Manifold Calculus: As mentioned in the introduction, the calculus of functors has applications to areas
reaching beyond homotopy theory. In particular, Goodwillie’s machinery can be applied to functors
from the category of open sets of a manifold to the category oftopological spaces. In tandem lectures,
Ismar Volic and Brian Munson gave a gentle introduction to manifold calculus. The talks pertained
to research in both the machinery of calculus (Munson’s results address the lifting problem from the
second stage of the tower to the third stage of the tower), andapplications of this machinery to the
study of embeddings (Volic described joint work with PascalLambrechts and Greg Arone related to
finite type invariants of knots).

• Calculus and Operads: Recently, there has been a flurry of activity trying to understand an apparent
operad structure on the layers of the Goodwillie tower of theidentity functor from spaces to spaces.
One of the great testimonies to the beauty of the calculus of functors is complexity of the Goodwillie
tower of the identity functor, which is seemingly innocuous. In particular, this complexity is the main
obstacle to obtaining a chain rule. Motivated by our instinct from the calculus of real variables, we
would expect that the layers of the tower forF ◦ G, whereF andG are homotopy functors of spaces,
would be the composition of the layers ofF with the layers ofG. However, the expected formulation
fails. Rather, the identity functor plays a critical role. In his talk, Michael Ching showed that the layers
of the identity functor form an operad, and conjectured a solution to the chain rule problem, relying
on the left and right module structures of the layers ofF and the layers ofG over this operad. An
alternative approach to understanding the operad structure of the layers of any homotopy functor of
spaces equipped with a natural transformationF ◦F → F was suggested in the talk of Andrew Mauer.
Mauer’s approach relies on the formulation of the layers of such a functor in terms of the cross effects
of this functor. This is also related to Dev Sinha’s talk, in which he presented another formulation of
the operad structure on cross effects of the identity of functors, at least for spheres. The relationship
between Sinha’s work and Ching’s work can be seen by relatingboth of their operads to the Lie operad.

• Tensor calculus of homotopy functors: ad hoc special session by Tom Goodwillie with an outline of an
obstacle toward a ‘theory of differential forms’ of homotopy functors (spaces) to (spectra).

• Relationships between calculus of functors and localizations: Nick Kuhn’s work withK(n) localiza-
tions and calculus, Taylor stages in the calculus of homotopy functors are homotopy localizing functors
in a suitable category of diagrams of spaces: Bill Dwyer

Abstracts of Talks

M. Ching Operads and calculus of functors
I’ll talk about some aspects of the relationship between thecalculus of homotopy functors and the theory of
operads. In particular, I’ll describe the operad structureon the derivatives of the identity functor and try to
explain how the derivatives of other functors might fit into this framework.

C. Casacuberta Continuity of homotopy idempotent functors
A functor L in a simplicial model category is called simplicial or continuous if it defines a map from
map(X, Y ) → map(LX, LY ) for all X, Y , which is natural and preserves composition and identity. As
shown by Farjoun and Hirschhorn,f -localizations can be constructed as continuous functors.Thus, a nec-
essary condition for a homotopy idempotent functor to be equivalent to somef -localization is that it be
equivalent to a continuous functor.

In joint work with different coauthors, we discuss continuity of homotopy functors in several model
categories, with emphasis on simplicial sets, spectra, andgroupoids. In the latter, remarkably, continuity is
automatic.
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W.G. Dwyer Localization and Calculus I and II
A general discussion of the idea of localization in homotopytheory. Followed in part II by specialization to
the localization of diagram categories, and further specialization to the case of a particular diagram category
associated to the Goodwillie tower.

E. Farjoun Open problems and some recent progress in localization and cellularization theory
The talk will revisit some of the progress made recently in understanding localization and co-localization
functors. We shall list some interesting problems and describe related partial progress. The talks will concen-
trate mostly on general properties of localization with respect to a map in both algebraic homological algebra
and topological categories.

T. Goodwillie Introduction to the Calculus of Homotopy Functors, I,II, and III
Overview of basic definitions and results (excisive andn-excisive approximations of functors, classification
of homogeneous functors, chain rule); key examples; matrixnotation. Followed in part II by: more about
homogeneous functors, with an emphasis on results which require no information about connectivity.

A geometric view of the functor/function analogy. In this view, Top is a variety and functors Top→
Spectra are global functions. I will say which categories are the tangent spaces of Top. I will discuss tangent
vector fields and more generally tensor fields, in both a coordinate-free way and a coordinate-dependent way.
I will show that there are two tangent connections, both of which are flat, and that their difference is the tensor
field known as smash product of spectra. I will say something about higher-order jets and about differential
operators. I cannot make much sense of differential forms (except 0-forms and 1-forms), but I may talk about
them anyway. Applications are work in progress, but I will make sure to at least say something trivial about
some nontrivial examples, and maybe something nontrivial about some trivial examples.

M. Hovey E(n)∗ − E(n)-comodules
I will recap my results with Neil Strickland about the structure of the category ofE(n)∗E(n)-comodules
(e.g. the Landweber filtration theorem works there as well).I will describe why we need to know more about
comodules (derived functors of product in the category of comodules form theE2-term of a spectral sequence
converging to theE(n)-homology of a product of spectra; this is relevant for the chromatic splitting conjec-
ture). Then I will describe some new results I have about the honest injectiveE(n)∗E(n)-comodules. There
are onlyn + 1 isomorphism classes of indecomposable injectives, and most interestingly, the endomorphism
ring of thek-th one is(E(k)∧)∗(E(k)∧), whereE(k)∧ is the completion ofE(k) at Ik.

So in the category ofE(n)∗E(n)-comodules, you are seeing all theE(k)∧ operations for0 ≤ k ≤ n,
and therefore seeing all the different stabilizer groupsSk for 0 ≤ k ≤ n. This is a good thing, since the
relation between the different stabilizer groups is basically what the chromatic splitting conjecture is about.

N. Kuhn Periodic homology of infinite loop spaces
If E∗ is a homology theory, one can ask to what extent theE∗-homology of an infinite loop space is deter-
mined by theE∗-homology of the associated spectrum. Using a combination of the Hopkins-Smith Periodicy
Theorem, as packaged in the telescopic functors of Bousfieldand me, and Goodwillie calculus, I can give a
quite definitive answer to this question when the homology theory is Morava K-theory. There are calculations
still to be done that may inform on the Telescope conjecture.

A. Mauer-Oats An operad from the derivatives of a monad
McClure and Smith have a simple idea that explains how to produce an operad from a functor operad by
evaluating on the unit of the smash product. The cross effects of a (reasonably good) monadF are a functor-
operad of spaces. We explain the proper way to prolong a multivariate functor to spectra, and use this to
produce an operad of symmetric spectra. If a certain problemof cofibrancy can be overcome, the spectra in
the operad will be the derivative spectra ofF .

B. Munson The layers of the embedding tower
I will discuss the layers of the embedding tower and their relationship to the obstructions to finding embed-
dings.
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D. Sinha A pairing between graphs and trees
We give an elementary pairing between graphs and trees, which facilitates the study of the Lie operad and
free Lie algebras. It arises in topology through both homology of configuration spaces and (conjecturally) in
studying Hopf invariants and Whitehead products. We sketchits possible application in using the embedding
calculus to define knot invariants, and hope that it might be of interest in the homotopy calculus as well.

D. Stanley Complete invariants of t-structures
Let R be a Noetherian ring. We give a classification of Bousfield classes on the bounded derived category of
R. This also gives complete invariants oft-structures on the same category. We also show that thet-structures
on the unbounded derived category ofZ-modules do not form a set.

I. Volic Embedding calculus and formality of the little cubes operad
I will first give a brief introduction to embedding calculus and say how a certain Taylor tower can be assigned
to an isotopy functor. Then I will describe joint work with Greg Arone and Pascal Lambrechts in which the
central observation is that the stages of the Taylor tower inthe case of Emb(M, V ), the space of embeddings
of a manifold in a vector space (up to immersions), have the structure of maps of certain modules over the
little cubes operad. Using Kontsevich’s formality of this operad, one then concludes that the cohomology
spectral sequence for Emb(M, V ) arising from the Taylor tower collapses rationally. In the special case of
spaces of knots, this was conjectured by Vassiliev. Additionally, using the interplay between embedding
and orthogonal calculus, one also deduces that the rationalcohomology of Emb(M, V ) only depends on the
rational homotopy type ofM when2dim(M) + 1 < dim(V ).

M. Weiss Stratifications and homotopy colimit decompositions
This talk will discuss the art of converting stratificationsinto homotopy colimit decompositions, perhaps
with applications to the theory of surface bundles. Every well behaved stratified space has a homotopy
colimit decomposition indexed by a certain topological category in which all endomorphisms are invertible
up to homotopy. In many cases one can do better and match the stratification with a homotopy colimit
decomposition indexed by a discrete category in which all endomorphisms are invertible. The matching
property means roughly that the strata correspond to the isomorphism classes of the indexing category.

List of participants

A determined effort was made to ease the entry into these subjects by young researchers. Specifically, out
of 34 participants, 3 were graduate students and a number of 5were within the first 3 years of their postdoc-
toral career. We had talks from one of the graduate students and from three of the postdocs.

Arlettaz, Dominique (Universite de Lausanne)
Bauer, Kristine (University of Calgary)
Casacuberta, Carles (University of Barcelona)
Chebolu, Sunil (University of Washington)*
Ching, Michael (Massachusetts Institute of Technology)*
Chorny, Boris (University of Western Ontario)**
Dover, Lynn (University of Alberta)*
Dror-Farjoun, Emmanuel (Hebrew University of Jerusalem)
Dwyer, William (Notre Dame University)
Goodwillie, Tom (Brown University)
Gutierrez, Javier (University of Barcelona)
Hovey, Mark (Wesleyan University)
Krause, Eva (University of Alberta)
Kudryavtseva, Elena (University of Calgary/Moscow State University)
Kuhn, Nick (University of Virginia)
Lambrechts, Pascal (Louvain-la-Neuve)
Mauer-Oats, Andrew (Northwestern University)**
McCarthy, Randy (University of Illinois at Urbana-Champaign)
Munson, Brian (Stanford University)**
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Nicas, Andrew (McMaster University)
Nikolaev, Igor (University of Calgary)
Palmieri, John (University of Washington)
Peschke, George (University of Alberta)
Prince, Tom (University of Alberta)
Ravenel, Douglas (University of Rochester)
Sadofsky, Hal (University of Oregon)
Scull, Laura (University of British Columbia)
Sinha, Dev (University of Oregon)
Stanley, Don (University of Regina)
Varadarajan, Kalathoor (University of Calgary)
Volic, Ismar (University of Virginia)**
von Bergmann, Jens (University of Calgary)**
Weiss, Michael (University of Aberdeen)
Zvengrowski, Peter (University of Calgary)
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