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Overview and Introduction to the Subject

This workshop focused on two relatively recent developmenhomotopy theory: homotopical localiza-
tion, and the calculus of homotopy functors. An effort wagimto promote the, as of yet, sparsely explored
interrelationship between these two subjects. To develsprnae of purpose and perspective, let us men-
tion a few evolutionary highlights of algebraic topologgrhotopy theory, and observe how its concerns and
viewpoints progress over time (we use present day termgydioroughout):

1. Early activity in the subject centered around combinatanvariants of polyhydra, such as the Euler
characteristic, Betti numbers, etc. These were adequatagsify the members of certain families of
spaces, such as connected surfaces which are compact d&uditWibundary. More generally, they
provided a tool for distinguishing spaces.

2. Next followed a functorial approach to invariants for tigconnectivities in general topological spaces:
homotopy groups, various species of (co-)homology thepm¢c. As a ‘biproduct’ the homotopy
invariance of the earlier invariants was obtained.

3. The next evolutionary layer came with the notion of a hapgtfunctor (one which preserves ho-
motopy equivalences). This provided a unifying platform &l of the specific and geometrically
motivated constructs which characterized the previougestn addition, it set the stage for a system-
atic comparison of such functors; e.g. which functors detdmmotopy theoretical property in a given
space? which homotopy functor factors through another? etc

4. With homotopy functors in the center of view, the need émi¢ to study such resulted in the study of
functors on the category of homotopy functors.

Each step further in this development was motivated by thepm@ct of gaining insight in earlier steps. As
history testifies, each step has been successful in thisdega

How do homotopical localization and the calculus of homgtlymctors fit in? Homotopy localization of
spaces or spectra generates homotopy functors with cerdictable properties. Such functors fit naturally
into framework of 3 above. Building on ideas and the groundtwwovided by the works of Adams [1],
Bousfield [5, 6], Bousfield-Kan [9], Sullivan [23], and otkex flurry of activity over the 1990’s culminated
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in a fully developed theory which permits implementationsuitable model categories; see the works of
Farjoun [13] and Hirschhorn [17].

The calculus of homotopy functors belongs to level 4. abdivaims to study a homotopy functdr by
a tower of homotopy functors

=T, F—T, \F—---—>TF—1TyF.

This tower is strikingly analogous with Taylor polynomigbgoximations of a smooth function as we’ll
describe below.
At this point we'd like to describe homotopical localizatiand the Goodwillie Calculus in more detalil.

1 Mathematical Background

We will be working in categories where it is possible to do lmbopy theory or something related to homotopy
theory. The most basic example of such a category is the@mat&gof topological spaces.

There are many variations on this category, some of which@msidered in Goodwillie’s work, and some
of which have been considered in the work of other authorse €am do homotopy theory in the category
of topological spaces with distinguished basepoififs(where all functions must preserve the basepoint),
topological spacegver some fixed base spa&g and the category of spectid, We will useZ, in the suc-
ceeding and take this opportunity to describe three basistnactions. LefX be a space with a distinguished
basepoint:q, andI be the unit interval. Theuspensiownf X is

SX = (I x X)/({0,1} x X UT x {zo}).

Thebased loop spacen X is
X = Mapqu'a {Oa 1}), (Xv 1’0))

in other words, all continuous maps from the interval’fowhich take the endpoints of the interval to the
basepoint. Themash produobf X with Y is

XAY = (X xY)/({zo x Y UX x {yo}}).

SinceS features prominently, and may not be familiar, we also desadt briefly, taking liberties with
the definition for the sake of concisenessspctrum may be thought of as being a sequence of topological
spaces with basepoints

{Xo, X1,...}

together with continuous functions (preserving basegpint
50X — X1

which are nice inclusions.
It is not important to elaborate the details of the morphigths functions) inS, these being somewhat
technical but to note the most germane properties of thegoay. There is a functor

S*: T, —S
which takes a spac¥ with distinguished basepoint to the spectrum
{(X,2X,%%X ... }.

In S, the functionX(+) is invertible, and fibers of maps (equivalent to) desusperssof cofibers.
There is also a smash productSrwhich is also denoted and which is determined by wanting

S®(XAY) = S¥(X)AS=(Y).

Ain S plays a role similar t@ in a category of modules.
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Our interest inS arises because any functor
X — ho(X)
from 7, to graded groups which satisfies the axioms of a homologyrytis@ctually given by
X~ m (S®(X)NH)

for an appropriately chosen spectruim So spectra represent homology theories.

2 Goodwillie's Calculus

We begin by considering a functor
F:T->T

such thatF" preserves weak homotopy equivalences. For purposes oficityypve also assume thdf(x)
is contractible [ is reduced. There is a special class of such functors which are refdoasexcisive An
excisive functor is a functor which takes homotopy pushquises to homotopy pullback squares. Loosely
this condition can be though of as taking cofiber sequencspaifes to fiber sequences of spaces. In other
words, if F' is excisive, then the functor

X = m(F(X))

satisfies the axioms of lmomology theory (It is a consequence as discussed above that linear ferater
represented by spectra; in fact an excisive reduced fufrchor based spaces is represented by the spectrum
F(S9).)

One reason excisive functors have a special role is that nyroases homology theories are computable,
so that even if we can't always identifif (X) precisely, we can at least compute its homotopy groups.
Goodwillie considers excisive functors to be analogousnedr functions in single variable calculus.

One way to think about the beginning of the functor calcubutoiimagine searching for an algorithm
which allows one to approximate an arbitrary (reduced homgtfunctor by an excisive one. In ordinary
calculus, the analogy is to finding a linear approximatioanarbitrary function.

Goodwillie solves this problem in [14]. Given an arbitragduced homotopy functaf’, Goodwillie
gives an algorithm for computing a linear (excisive) fumcto

PlFZT—>T

which comes with a natural transformatign: F* — P, F which isinitial among natural transformations
from F' to linear functors. That is, given any natural transformati : ' — G whereG is linear,v factors
throughn. With the restrictions we've given, it is easy to describe éifigorithm for makingP; F'. With the
restrictions we've given, there is a natural map

F(X) — QF(EX).

The target functor (as a functor &f) is also a reduced homotopy functor, so the constructiorbedterated.
Then P, F is (loosely) the limit of

F(X)— QF(2X) — Q*F(2?X) — ...

The notion of a linear approximation to a functor turns outéqust the beginning of an analogy between
Taylor polynomials and Taylor series. Goodwillie calls acisive functor is ‘1-excisive.” Goodwillie gives
a definition ofn-excisive roughly speaking, a functor is-excisive if it takes any: + 1-cubes of spaces in
which every square is a pushout to some 1 cubes of spaces in which the initial corner is the pullback of
the rest of the cube. From this definition it is obvious thi #asier to be + 1 excisive tham excisive (that
is, n-excisive functors are automaticaly+ 1-excisive).

For each (reduced, homotopy) functr there is am-excisive approximatio,, F' and a natural trans-
formationn, : FF — P, F which is initial among natural transformations frafhto n-excisive functors.
Just asl-excisive functors are to be thought of as analogous tolifigactions,n-excisive functors should
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be thought of as analogous to polynomial functions of degreSo P,, F' can be though of as the degree
polynomial approximation td”'. Because: — 1-excisive impliesn-excisive, the universal property of the
natural transformation

Mo F— P, F

implies there is a functor,, : P,F — P, _1F so that
Ty OMNn = MNn—1-

There are two important structural observations to make.Heérst the natural transformations give us
a tower of functorg P, F'} and the natural transformatiop, give compatible maps fromt' into this tower.
One can ask what the relationship is betwéeand the homotopy inverse limit of this tower. In particular,
one hopes that for any particular spa€eF' is analyticat X (that is,F(X) = lim(P, F')(X)).

Second, recall that linear functors are described by spe&olynomial functors of degree greater than
1 don't have such a simple description, but for eaglthe fiber of the natural transformatiaf), : P, F —
P,,_1Fis completely describe by a spectrum with #tt symmetric groupy,,, acting on it, and techniques
for determining what this spectrum actually is are descrilme[16]. This functor should be though of as
a homogenous functor of degree So while excisive functors of degreemay be somewhat complicated,
they are described by a finite number of extensions of fusatdrich are themselves determined by equiv-
ariant spectra. In principle, this leads to descriptionoglytic) functors from spaces to spaces in terms of
equivariant stable data together with extension inforomati

This is already interesting in the case wheéres the identity functor. In this case the functor is, of cayrs
understood, but because homotopy groups are extremelyudlitio compute for most topological spaces, the
homotopy groups of the functor evaluated at most intergstpaces are not understood. The homogenous
layers are discussed in [16] and [19], and the entire toweisisussed in [2]. This work is further developed
for particular values of the spacé in[3] where the homotopy groups of the spaces in the Goowdwer
shed light on the homotopy groups &f.

3 Homotopical localization

Homotopical localization has its roots in algebraic lozatfion. Serre introduced-theory as a tool that
allowed him to prove local versions of classical theorerks the Hurewicz theorem. Some years later the
implicit ideas are developed in different directions by Kgui and Sullivan.

Quillen, in [22], gives a development of localization in “oied categories”. At its most fundamental, this
gives conditions where a new category can be constructeddroold category by “inverting” some collection
of morphisms which are to be thought of as equivalences @émtw category). A specific and commonly
used example is to take the old category to be the categomypoldgical spaces and the equivalences to
be maps which induce isomorphisms Bi(—; Q). (More examples can be easily produced by substituting
other coefficients fof).)

Sullivan, in [23] takes a different approach. He descrilmesafset of primes and sufficiently nice CW
complexesX a constructionX ¢ which “inverts” primes inS. Thatis, if X — Y is a map which induces an
isomorphism inH, (—; Z[S~!]), then the induced mafis — Y will be an equivalence.

Bousfield in [5] generalized these ideas considerablgofology theory, (—) is a homotopy invariant
functor from spaces to graded abelian groups which satisigessual properties of singular homology except
that if « represents the one point space, the graded giap) is not required to be concentrated in dimension
0. Given such a homology theory, Bousfield constructs a funEtp from the category of spaces to itself
which he callsE-localization, and a natural transformatienfrom the identity functor ta%. E-localization
is determined up to homotopy by the following two properties

1. Ly X is E-local.

2. The natural transformation evaluatedXagives a mapX — Ly X which is initial (up to homotopy)
among maps fronk to E-local spaces.

Here byY is E-local, we mean that i£,(A) = E.(x), then[A, Y] = %, the one point set. So all maps from
AtoY are homotopic to the constant map.
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Fundamental to the construction of Bousfield’s localizationctors are the class of maps which are
to localize to homotopy equivalences. Bousfield ([8]), Dfd2]) and other authors study more general
localizations based on collections of maps which are to imecequivalences.

There is a sequence of homology theories related to colmki®wn as Johnson-Wilson theories

E(O)*(_) = H*(_; Q)a E(l)*(_)v E(Q)*(_)v ce

(here E(1).(—) is closely related to compleX’-theory). Since work of Morava as expanded by Miller,
Ravenel and Wilson [20] and the celebrated Nilpotence Téradi 1, 18] localization with respect to these
theories has become one of the central organizing prirgipfestable homotopy, and to a lesser extent,
unstable homotopy. Localization with respect to the hompliheoryE(n) is generally denoted,,(—), and
this family of localizations are referred to as the chrombicalizations.

4 Scope of wor kshop

The workshop was intended to center on areas where the gslgifunctors meets homotopical localizations.
Let L be a homotopical localization functor on some categbrig guaranteed to come with an important
structure; a natural transformation from the identity fian¢o Z:

nx : X — L(X)

such that
nLx : LX — L(LX)

is a homotopy equivalencé. (s homotopy idempotent).

This is also a property satisfied by the functors in GoodeiliTaylor Tower when interpreted suitably.
Consider the category whose objects are homotopy funatoms for example) to 7. ThenP,, applied to
this category of functors is idempotent and comes with arahttansformation from the identity functor. In
Dwyer’s presentation at the workshop, he described howddywreP,, as a homotopical localization.

One of the more fascinating results in these area is thataié\and Mahowald in [3]. This paper analyzes
the Goodwillie tower of the identity functor from spaces pases. One of the main results is that for certain
spaces (at least for spheres) the layers in the Goodwilliertdor the identity functor are essentially the
chromatic localizationdl,,,. While the implications of this fact are far from completeiyderstood, Michael
Ching’s work presented at this workshop displays these sdneets (the derivatives of the identity functor)
arising as the spaces in an operad.

A second place where an interaction between chromaticizatiins and Goodwillie’s techniques was
demonstrated at this meeting was in Kuhn'’s report on his wtrk is a spectrum, it determines a certain
infinite loop space (writtef2>° X'). Kuhn is able to use a number of techniques including Gollidwalculus
to computeF, (Q2°°X) in terms of E, (X ) for homology theorie€, (—) related to chromatic localizations.

While initially the calculus of homotopy functors was desg for functors on spaces or spectra, the
theory has in the mean time found parallel instances in a Buofiother categories, such as chain complexes,
vector spaces and the category of open subsets of a manifdkibegs for an eventual full bodied framework
for the calculus of homotopy functors on suitable modelgaities.

There were two main goals to this conference. First, we sotagimtroduce researchers in the calculus
of functors or homotopical localization to each other’sjeab Second, we sought to develop an overlap
of these two research areas by exploring current researbbtmareas. Towards the first objective, Tom
Goodwillie provided a series of expository lectures whigid lout the foundations of the calculus of functors.
A complementary series of lectures were provided by Bill Bwywho gave an excellent introduction to
localizations and explained how to construct Goodwilliggg/lor stages as homotopy localizations within a
suitable category of diagrams of spaces as mentioned alidwese lectures laid the groundwork for what
followed.

Outcome of the meeting
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While it is unfair to categorize the contributions of the apants of this conference into such a short
list of topics, it is beneficial to enumerate those topicsolifiorm current trends in the calculus of functors
and homotopical localizations. What follows is a short coatipn of those topics which pertain most to the
intended goals of this meeting.

e Manifold Calculus: As mentioned in the introduction, théccéus of functors has applications to areas
reaching beyond homotopy theory. In particular, Goode/gdlimachinery can be applied to functors
from the category of open sets of a manifold to the categotgmdlogical spaces. In tandem lectures,
Ismar Volic and Brian Munson gave a gentle introduction tanifedd calculus. The talks pertained
to research in both the machinery of calculus (Munson’'sltesuldress the lifting problem from the
second stage of the tower to the third stage of the tower),apptications of this machinery to the
study of embeddings (Volic described joint work with Padcainbrechts and Greg Arone related to
finite type invariants of knots).

e Calculus and Operads: Recently, there has been a flurry igftadtying to understand an apparent
operad structure on the layers of the Goodwillie tower ofittemtity functor from spaces to spaces.
One of the great testimonies to the beauty of the calculusraftbrs is complexity of the Goodwillie
tower of the identity functor, which is seemingly innocuours particular, this complexity is the main
obstacle to obtaining a chain rule. Motivated by our ingtinom the calculus of real variables, we
would expect that the layers of the tower 8o G, whereF' andG are homotopy functors of spaces,
would be the composition of the layers Bfwith the layers ofG. However, the expected formulation
fails. Rather, the identity functor plays a critical role.His talk, Michael Ching showed that the layers
of the identity functor form an operad, and conjectured aitsmh to the chain rule problem, relying
on the left and right module structures of the layersFoénd the layers ofs over this operad. An
alternative approach to understanding the operad steuctuthe layers of any homotopy functor of
spaces equipped with a natural transformafionf” — F' was suggested in the talk of Andrew Mauer.
Mauer’s approach relies on the formulation of the layersushsa functor in terms of the cross effects
of this functor. This is also related to Dev Sinha’s talk, ihigh he presented another formulation of
the operad structure on cross effects of the identity of tiunsc at least for spheres. The relationship
between Sinha’s work and Ching’s work can be seen by relatitig of their operads to the Lie operad.

e Tensor calculus of homotopy functors: ad hoc special sedsidom Goodwillie with an outline of an
obstacle toward a ‘theory of differential forms’ of homoydpinctors (spaces) to (spectra).

e Relationships between calculus of functors and locabrati Nick Kuhn's work withK (n) localiza-
tions and calculus, Taylor stages in the calculus of hompofiepctors are homotopy localizing functors
in a suitable category of diagrams of spaces: Bill Dwyer

Abstracts of Talks

M. Ching Operads and calculus of functors

I'll talk about some aspects of the relationship betweercdieulus of homotopy functors and the theory of
operads. In particular, I'll describe the operad structumehe derivatives of the identity functor and try to
explain how the derivatives of other functors might fit intdstframework.

C. Casacuberta Continuity of homotopy idempotent functors
A functor L in a simplicial model category is called simplicial or contous if it defines a map from
map X,Y) — mapLX, LY) for all X, Y, which is natural and preserves composition and identity. A
shown by Farjoun and Hirschhorri;localizations can be constructed as continuous funcfbinsis, a nec-
essary condition for a homotopy idempotent functor to bevedgnt to somef-localization is that it be
equivalent to a continuous functor.

In joint work with different coauthors, we discuss contiyuof homotopy functors in several model
categories, with emphasis on simplicial sets, spectragamgpoids. In the latter, remarkably, continuity is
automatic.
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W.G. Dwyer Localization and Calculus | and Il

A general discussion of the idea of localization in homottpory. Followed in part Il by specialization to
the localization of diagram categories, and further spigaiton to the case of a particular diagram category
associated to the Goodwillie tower.

E. Farjoun Open problems and some recent progress in localization afidlarization theory

The talk will revisit some of the progress made recently idenstanding localization and co-localization
functors. We shall list some interesting problems and dlescelated partial progress. The talks will concen-
trate mostly on general properties of localization withpesst to a map in both algebraic homological algebra
and topological categories.

T. Goodwillie Introduction to the Calculus of Homotopy Functors, 1,11,calhl

Overview of basic definitions and results (excisive arelxcisive approximations of functors, classification
of homogeneous functors, chain rule); key examples; mawtation. Followed in part Il by: more about
homogeneous functors, with an emphasis on results whichreego information about connectivity.

A geometric view of the functor/function analogy. In thiswi, Top is a variety and functors Top:
Spectra are global functions. | will say which categoriestae tangent spaces of Top. | will discuss tangent
vector fields and more generally tensor fields, in both a doatd-free way and a coordinate-dependent way.
I will show that there are two tangent connections, both atWwilare flat, and that their difference is the tensor
field known as smash product of spectra. | will say somethbauthigher-order jets and about differential
operators. | cannot make much sense of differential formsefat 0-forms and 1-forms), but | may talk about
them anyway. Applications are work in progress, but | willkaaure to at least say something trivial about
some nontrivial examples, and maybe something nontriialiasome trivial examples.

M.Hovey E(n). — E(n)-comodules
I will recap my results with Neil Strickland about the struet of the category off(n).E(n)-comodules
(e.g. the Landweber filtration theorem works there as wielljill describe why we need to know more about
comodules (derived functors of product in the category ofiedules form the’,-term of a spectral sequence
converging to théZ'(n)-homology of a product of spectra; this is relevant for theoaatic splitting conjec-
ture). Then | will describe some new results | have about trekt injective?' (n ). E(n)-comodules. There
are onlyn + 1 isomorphism classes of indecomposable injectives, and imesestingly, the endomorphism
ring of thek-th one is(E(k)")*(E(k)"), whereE (k)" is the completion of2(k) at Ij.

So in the category of(n).E(n)-comodules, you are seeing all th&k)" operations fol) < k < n,
and therefore seeing all the different stabilizer grodpdor 0 < £ < n. This is a good thing, since the
relation between the different stabilizer groups is bdlyieghat the chromatic splitting conjecture is about.

N. Kuhn Periodic homology of infinite loop spaces

If E, is a homology theory, one can ask to what extentihehomology of an infinite loop space is deter-
mined by theF,.-homology of the associated spectrum. Using a combinafitiredHopkins-Smith Periodicy
Theorem, as packaged in the telescopic functors of Bousfiaddmne, and Goodwillie calculus, | can give a
quite definitive answer to this question when the homologpti is Morava K-theory. There are calculations
still to be done that may inform on the Telescope conjecture.

A. Mauer-Oats An operad from the derivatives of a monad

McClure and Smith have a simple idea that explains how toyredan operad from a functor operad by
evaluating on the unit of the smash product. The cross sfféd@ (reasonably good) mon&dare a functor-
operad of spaces. We explain the proper way to prolong avatilite functor to spectra, and use this to
produce an operad of symmetric spectra. If a certain prolofecofibrancy can be overcome, the spectra in
the operad will be the derivative spectrafof

B. Munson The layers of the embedding tower
| will discuss the layers of the embedding tower and theatiehship to the obstructions to finding embed-
dings.
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D. Sinha A pairing between graphs and trees

We give an elementary pairing between graphs and treeshvididitates the study of the Lie operad and
free Lie algebras. It arises in topology through both homgylof configuration spaces and (conjecturally) in
studying Hopf invariants and Whitehead products. We skié$gbossible application in using the embedding
calculus to define knot invariants, and hope that it mightfdaterest in the homotopy calculus as well.

D. Stanley Complete invariants of t-structures

Let R be a Noetherian ring. We give a classification of Bousfields#a on the bounded derived category of
R. This also gives complete invariantste$tructures on the same category. We also show thatdhreictures

on the unbounded derived categoryfimodules do not form a set.

I.Volic Embedding calculus and formality of the little cubes operad

| will first give a brief introduction to embedding calculusdasay how a certain Taylor tower can be assigned
to an isotopy functor. Then | will describe joint work with &y Arone and Pascal Lambrechts in which the
central observation is that the stages of the Taylor towérércase of Emtd\/, V'), the space of embeddings
of a manifold in a vector space (up to immersions), have thettre of maps of certain modules over the
little cubes operad. Using Kontsevich’s formality of thisemad, one then concludes that the cohomology
spectral sequence for Efitd, V') arising from the Taylor tower collapses rationally. In thesial case of
spaces of knots, this was conjectured by Vassiliev. Adddily, using the interplay between embedding
and orthogonal calculus, one also deduces that the ratohaimology of EmbAZ, V') only depends on the
rational homotopy type af/ when2dim(M) + 1 < dim(V).

M. Weiss Stratifications and homotopy colimit decompositions

This talk will discuss the art of converting stratificatioimso homotopy colimit decompositions, perhaps
with applications to the theory of surface bundles. Everyl Wwehaved stratified space has a homotopy
colimit decomposition indexed by a certain topologicakgatry in which all endomorphisms are invertible
up to homotopy. In many cases one can do better and matchr#tdication with a homotopy colimit
decomposition indexed by a discrete category in which afloemorphisms are invertible. The matching
property means roughly that the strata correspond to tlmedgehism classes of the indexing category.

List of participants

A determined effort was made to ease the entry into theseststl)y young researchers. Specifically, out
of 34 participants, 3 were graduate students and a numbewefé&within the first 3 years of their postdoc-
toral career. We had talks from one of the graduate studendtfram three of the postdocs.

Arlettaz, Dominique (Universite de Lausanne)

Bauer, Kristine (University of Calgary)

Casacuberta, Carles (University of Barcelona)

Chebolu, Sunil (University of Washington)*

Ching, Michael (Massachusetts Institute of Technology)*
Chorny, Boris (University of Western Ontario)**

Dover, Lynn (University of Alberta)*

Dror-Farjoun, Emmanuel (Hebrew University of Jerusalem)
Dwyer, William (Notre Dame University)

Goodwillie, Tom (Brown University)

Gutierrez, Javier (University of Barcelona)

Hovey, Mark (Wesleyan University)

Krause, Eva (University of Alberta)

Kudryavtseva, Elena (University of Calgary/Moscow Stateversity)
Kuhn, Nick (University of Virginia)

Lambrechts, Pascal (Louvain-la-Neuve)

Mauer-Oats, Andrew (Northwestern University)**
McCarthy, Randy (University of lllinois at Urbana-Chamga)
Munson, Brian (Stanford University)**
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Nicas, Andrew (McMaster University)
Nikolaev, Igor (University of Calgary)
Palmieri, John (University of Washington)
Peschke, George (University of Alberta)
Prince, Tom (University of Alberta)

Ravenel, Douglas (University of Rochester)
Sadofsky, Hal (University of Oregon)

Scull, Laura (University of British Columbia)
Sinha, Dev (University of Oregon)

Stanley, Don (University of Regina)
Varadarajan, Kalathoor (University of Calgary)
Volic, Ismar (University of Virginia)**

von Bergmann, Jens (University of Calgary)**
Weiss, Michael (University of Aberdeen)
Zvengrowski, Peter (University of Calgary)
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