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1 Overview

Probabilistic Combinatorics is an interface between Pwditya and Discrete Mathematics. Initiated by P.
Erdds over fifty years ago, it has now become one of the fasteglafgng areas in all mathematics, with
fascinating applications to many other important areash 13 Theoretical Computer Science and Statistical
Physics. Roughly speaking, Probabilistic Combinatormmprises three main topics, for each of which we
give a short description. Naturally, there are consideralikrlaps between these topics.

The first topic is the application of probability to solve doimatorial problems, and conversely the appli-
cation of combinatorial methods to prove results in prolitgtiheory. Typical examples of the former are the
“existence” proofs of Erds. In general, one wants to show the existence of certagctsbby generating an
appropriate probabilistic space and proving that the ddgibject has positive measure in this space. The last
twenty years or so have witnessed significant progress sragipproach. The development of new and pow-
erful techniques, such as the semi-random method and gsstwarp concentration inequalities, has enabled
researchers to attack many famous open problems, condimhtractable not so long ago, with considerable
success. Furthermore, many new ideas discovered in thiegsdiave turned out to be useful for problems
from different areas. For instance, the recent Galvin-K&snlt on Gibb’s measures has its roots in an earlier
graph colouring result of Kahn. For an example of combinesdoeing used in the field of probability, one
can look at some recent work of Louigi Addario-Berry and Brikeed, which uses combinatorial techniques
to bound the point at which a random walk first returns to zero.

The second topic is the study of random combinatorial stirest such as random graphs. The typical
guestion here is to show that at a given density, a randonhdrap a desired property with very high proba-
bility. The study of random graphs has recently received nteost from industry. It has been discovered
that various important real-life graphs (such as the Igroan be modeled as a random graph of a special
type. If one can analyze these graphs, then one can makecfowadiabout the evolution of the real-life
networks.

The third topic is the study of randomized algorithms. Héeerhain question is either to design random-
ized algorithms for a certain goal or to analyze natural @tlyms given special inputs. While this topic can
also be considered as a topic in Computer Science, it hasdwut quite recently that it also has much to
do with Statistical Physics. For instance, there is a nhtdgarithm (motivated by problems from statistical



physics) for generating a random colouring of a graph. Adigihg question is to know when this algorithm
runs in polynomial time, and a proper bound would have angazimsequences in Physics.

The focus of the workshop lay specifically in the above threemesearch topics of Probabilistic Combi-
natorics. One aim of the workshop was simply to foster irtiioa and collaboration between researchers in
these fields, and to discuss recent progress and commun@ateesults and ideas. To mention an example,
the following conjecture of Louigi Addario-Berry (see [1ommunicated during an open problem session,
was solved at the workshop by Jacques Verstraete usingadheitgie of combinatorial nullstellensatz:

Theorem 1.1 Given a graphG = (V, E) and, for everyw € V, alist D, C {0,1,...,d(v)} satisfying
|D,| > [d(v)/2], there is a spanning subgragi C G such that for allv, dg (v) € D,.

Additionally, this forum was an opportunity to make stafetee-art probabilistic techniques available to a
broader audience, in particular graduate students.

With the rapid development in recent years of probabilisgthniques and their applications to various
mathematical disciplines, the workshop was a key oppdstiaibring together researchers representing the
entire spectrum of Probabilistic Combinatorics, so as tasotidate our knowledge at present and set hew
horizons for future discoveries.

In the remainder of the report we describe in detail some@ftivances presented at the workshop.

2 The Erd6s-Renyi Random Graph

Joel Spencer Connectedness 6f(n, p)

| gave a talk on The Probability of Connectedness, the régilig an asymptotic formula for the proba-
bility that the random grapti'n, p is connected, for the entire rangefThe key to it is a new analysis of
breadth first search over the random gré&ph p. This is an idea | have been working on for a year or so but
it really came together during the workshop. | have givekstain this general topic before, most recently at
the CMS Annual Meeting in Waterloo in June, but at this wodgsthe ideas were clearer than before.

The asymptotic probability off(n, p) being connected id; A, with

A = Al(n,p) = (1 — (1 _p)n)n—l

1 forp>n-!
1—(c+1)e ¢ forp~ecn?!
As = As(n,p) ~ %62 forp ~en ' andn=1/? < e = o(1)
complicated fop ~ cn=3/2
n! for0 < p < n=3/2

(Note that the probability that there are no isolated vesiif the events of being isolated were independent
would be(1 — (1 — p)"~1)™ which is quite close.)

Whenp < n~3/2 it is simpler to write that the probability af/(n, p) being connected is roughly the
probability thatG(n, p) is precisely a tree, which is™ ~2p" (1 — p)™~ (=D with m = (3).

Whenp ~ c¢n~3/2 let B be the probabilityG(n, p) is precisely a tree. The@i(n, p) is a tree plug edges
with probability Be¢;c?'/? where thec; are the “Wright constants”. Convergence occurs and thegiibty
thatG(n,p) is atree isB Y c;c3/2.

The arrangements were excellent, giving myself and thersienty of time to “prove and conjecture.”

Louigi Addario-Berry - The Diameter of the Minimum Weight Spanning Tree
Given a connected graght = (V, E), E = {e1,..., g}, together with edge weight§” = {w(e)le €
E}, a minimum weight spanning tree 6fis a spanning tre& = (V, E’) that minimizes



If the edge weights are distinct then this tree is uniquehis tase we denote it by MW$®E). Minimum
spanning trees are at the heart of many combinatorial opditioin problems. In particular, they are easy to
compute, and may be used to approximate hard problems suble asinimum weight traveling salesman
tour. As a consequence, much attention has been given tgirsgutheir structure, especially in random
settings and under various models of randomness. For pest&rieze determined the weight of a the MWST
of a complete graph whose edges have been weighted by indleqteand identically distributed (i.i.d[f, 1]-
random variables. This result has been reproved and geestddy Frieze and McDiarmid [8] and Aldous
[2]. Under the same model, Aldous derived the degree digtdb of the MWST. Both these results rely on
local properties of minimum spanning trees. We are inteckst their global structure.

The distancebetween vertices andy in a graphH is the length of the shortest path franto . The
diameterdiam( H) of a connected grapH is the greatest distance between any two verticds.inVe are
interested in the diameters of the minimum weight spanniegstof a clique<,, onn vertices whose edges
have been assigned i.i.d. real weights. We w$e) to denote the weight of. In Banff we presented our
proof of the following theorem, answering a question of Egiand McDiarmid [9].

Theorem 2.1 Let K,, = (V, E)) be the complete graph amvertices, and le{ X.|e € E} be independent
identically distributed edge-weights. Then conditionpbn the event that for alt # f, X. # Xy, itis the
case that the expected value of the diameter of MESTis ©(n'/3).

Benny Sudakov- Embedding Nearly-Spanning Bounded Degree Trees

In this talk we describe a sufficient condition for a spars#pbrG to contain a copy of every nearly-
spanning tred” of bounded maximum degree, in terms of the expansion piieparfG. The restriction on
the degree of’ comes naturally from the fact that we consider graphs of teoislegree. Two important
examples where our condition applies are random graphsrapthgwith a large spectral gap.

The problem of existence of large trees with specified shapgidom graphs has a long history starting
with conjecture of Erds that a random grapfi(n, ¢/n) almost surely contains a path of length at least
(1 — a(e))n, wherea(c) is a constant smaller than one for all> 1 andlim, .o, a(c) = 0. The question
of existence of large trees of bounded degree other thars rattparse random graphs was studied by de
la Vega. He proved that for sufficiently largeone can almost surely embed @(n,c/n) any tree with
maximum degree at modtthat occupies a small constant proportion of the randomigr&uir first result
improves the result of Fernandez de la Vega and generakzesa results on the existence of long paths.
It shows that the sparse random graph contains almost swely nearly-spanning tree of bounded degree,
i.e., tree of sizél — ¢)n.

For a graphG let A\; > X\ > ... > )\, be the eigenvalues of its adjacency matrix. The quantity
AG) = max;>2 || is called thesecond eigenvaluef G. A graphG = (V, E) is called an(n, D, \)-graph
if it is D-regular, has: vertices and the second eigenvaluetbfs at mosth. It is well known that if\ is
much smaller than the degrd®, thenG has strong expansion properties, so the ratjo\ could serve as
some kind of measure of expansion@f Our second result shows that &m D, \)-graphG with large
enough spectral gap/\ contains a copy of every nearly-spanning tree with boundepgle. This extends a
result of Friedman and Pippenger [7].

3 Regular Graphs

Nicholas Wormald - Large Independent Sets in Regular Graphs of Large Girth

An independent sdt of a graph(7 is a subset of the vertices 6fsuch that no two vertices dfare joined
by an edge. Thandependence numbef G is the cardinality of a maximum independent set, and is dmhot
by a(G). Thegirth of G is the length of its shortest cycle.

In 1991, Shearer gave the best known lower bounds(6¥) for G with given maximum degree and large
girth. For instance, ity is 3-regular withn vertices, Shearer’s results imply thatG) > %n provided the
girth is sufficiently large, and he gave other results fopgsaof maximum degreé in terms of f(d) where
the functionf is defined iteratively.

Itis known that looking at graphs with maximum degrer such problems is equivalent to lookingdat

regular graphs. In 1995, the speaker analyzed two greedyitlligns which give rise to large independent sets



in random regular graphs, one simple and one more sophestic&Vith Joe Lauer, we recently studied the
simple greedy algorithm, applied to large girth graphs, estdblished a result for all regular graphs of large
girth, that coincides with the corresponding result fordam graphs. We use a “nibble”-type approach but
require none of the sophistication of the usual nibble mé#rguments, using only linearity of expectation.
We obtained the following result.

Theorem 3.1 For all d > 3, the independence number of a graph witkertices, maximum degrekeand
girth g is at least

(1o (1~ @= e,

wheres(g) — 0 asg — co.

This improves Shearer’s result for &l> 7.

More recently, with Mohammad Salavatipour, we have analyiae more sophisticated greedy algorithm
mentioned above. The results are stronger but are givenrrmstef the solutions of differential equations
which have only been solved numerically. With Carlos Hoppenhave examined algorithms for finding
large induced forests in graphs with bounded degree and lirth. It is believed that, in all cases, the
constants obtained for regular graphs of large girth cdmeiith those already known for random regular
graphs.

It was known that, given such a bound for regular graphs afrarily large girth, the same bound carries
over to an asymptotic bound for random regular graphs. Thectwork indicates that for many problems
with results on random regular graphs obtained by analygiegdy algorithms the results can be “explained”
in this way, despite the fact that they were first proved diyeo the random case. It is not known to what
extent this is a general phenomenon. In particular, it iskmatwn if all 4-regular graphs with sufficiently
large girth are 3-colourable.

Angelika Steger- A Probabilistic Counting Lemma for Sparse Regular Graphs

This is joint work with S. Gerke and M. Marciniszyn.

Over the last decades Szeiddi's regularity lemma [18] has proven to be a very powedol in modern
graph theory. Unfortunately, in its original setting it prdives nontrivial results for dense graphs, that is
graphs with©(n?) edges. In 1996 Kohayakawa [14] and independentigiRntroduced a variant which
holds for sparse graphs, provided they satisfy some addittructural conditions (which essentially mean
that the graph does not contain regions that are too densajevér, using this sparse regularity lemma
to prove e.g. extremal and Ramsey type results similar tkttosvn results in the dense case requires as
an additional step: the existence of appropriate embedulirgpunting lemmas. For the sparse case this
missing step has been formulated as a conjecture by Kohagakaiczak and Bdl [15]. For a graph, let
G(H,n,m) be the family of graphs on vertex s€t= (J, oy (5, Vo, Where the set¥, are pairwise disjoint
sets of vertices of size, and edge sebl = U{w}eE(H) E,,, whereE,, C V, x V, and|E,,| = m.
LetG(H,n,m,e) C G(H,n,m) denote the set of graphs ¢l H, n, m) satisfying that eactV, U V,, E,,)
is an(e)-regular graph.

Conjecture 3.2 (KLR Conjecture [15]) Let H be a fixed graph and define
F(H,n,m) ={G € G(H,n,m) : H is not a subgraph of7}.

For any 3 > 0, there exist constants) > 0, C' > 0, ng > 0 such that for allm > Cn?2=1/%H) n > p,
and0 < e < ¢gg,

o\ [E(H)|
\F(H,n,m) N G(H,n,m,e)| < ™ (:‘n) ,

whered, (H) = max { {E=5 : F € H,|V(F)| = 3}.

One of the key difficulties in the proof of the KLR Conjectusetie fact that forn = o(n?) the size of
a neighbourhood of a vertex is on average). The definition of regularity, however, only deals with lare



sized subsets and thus regularity seems not to be inhegtedligraphs induced on the neighbourhoods of
some vertices. In a joint paper [10] with Gerke, Kohayakaaved Fbodl we were recently able to prove that
nevertheless in the sparse case a hereditary version roldslk at least in the probabilistic setting. This
result readily implies much shorter and more elegant probfthe results known so far, namely the case
of cyclesCy, for all K > 3 and forH = K, and K5. In this talk we show that in fact a much stronger
property holds. Namely, small sets not only inherit withthfizobability the regularity property, but they also
satisfy with high probability all properties that regulaptes satisfy with high probability. This allows us
to show that the KLR Conjecture holds for all complete grafohslightly larger number of edges than the
conjectured value. In return, we can show the existence ofyroapies instead of just one copy. That is, we
get a so-called counting lemma.

Theorem 3.3 ([11]) For all £ > 3,6 > 0, and > 0, there exist constantg, € N, C' > 0, ande > 0 such
that
TL2 (2)
|F(K¢,n,m,0)NG(Ke,n,m,e)| <™ - (m)

provided thatm > Cn?~ /(=1 n > ng, and0 < < g, and whereF(K,, n, m,§) denotes the family of
graphs inG (K, n,m) that contain less tha(l — §)n!V (#)I(22)|E(H)I copies ofH .

4 Graph Colouring

Andrew King - Advances Towards Reed’s Conjecture

My current research includes several problems: partialltesowards Reed'’s Conjecture, probabilistic
colouring work to similar ends, and the reconciliation oblpabilistic models via rapidly-mixing Markov
chains.

Reed’s Conjecture states that for any graphy(G) < [(1/2)(A(G) + 1 + w(@))] [19]. Generally
speaking, there are two ways to work towards this result. fireeinvolves proving it outright for certain
classes of graphs, and the second involves proving thahdtifar from the truth. That isy(G) < [(1/2 +
o(1))(A(G) + 1 + w(G))], meaning thak (G) < [(1/2 4+ f(A(G))(A(G) + 1 + w(@))] wheref tends
to 0 asA tends to infinity. There are partial results of this flavomg &am working towards broadening this
body of work as well as finding ways to colour graphs with fewoaos in polynomial time.

Since the workshop, Bruce Reed and | have proved that Reedie@ure holds for quasi-line graphs,
improving upon a result of Chudnovsky and Ovetsky [3]. Fanthore, for these graphs a colouring using at
most[(1/2)(A(G) + 1 + w(G))] colours can be found in polynomial time.

5 Pseudorandom Graphs

Yoshiharu Kohayakawa - Turan’s Theorem for Pseudorandom Graphs

This is joint work with V. Rodl (Emory University), M. Schacht (Humboldt-Univeiditzu Berlin), P. Sis-
sokho (lllinois State University), and J. Skokan (Univdesie de 8o Paulo).

The generalized Tuan number &G, H) of two graphsG and H is the maximal number of edges in a
subgraph of7 not containingH. If G is the complete grapf’,, onn vertices, then, by the Eéd—Stone—

Simonovits theorem, we have @x,,, H) = (1 —1/(x(H) - 1)+ 0(1)) (%), whereo(1) — 0 asn — oc.
We give an analogous result for triangle-free graphsnd pseudorandom graphis Our concept of

pseudorandomness is inspired by flnmbledgraphs introduced by A. Thomason. We say that a giG@iph
(¢, @)-bijumbledif

lea(X,Y) - X |IY]] < av/IX][Y]

for every pair of setsX, Y C V(G), wheree¢(X,Y') denotes the number of paifs,y) € X x Y with
xy € E(G).

For simplicity, here we only state a consequence of our masult: for any triangle-free grapH
with maximum degree\ and for anyd > 0, there existsy > 0 such that any large enoughvertex,
(q,v¢**1/?n)-bijumbled graphG satisfies



ex(G, H) < (1— +6) |E(G)].

v
X(H) -1

Jan Vondrak - 2-Colourability of Randomly Perturbed Hypergraphs

This is joint work with Benny Sudakov.

In the classical Erfis-Renyi model, a random graph is generated by starting from gstyegraph and
then adding a certain number of random edges. More rec&atynan, Frieze and Martin considered a gen-
eralized model where one starts with a fixed grépk- (V, E) and then inserts a collectiai of additional
random edges. We denote the resulting random gragh-by?. The initial graphZ can be regarded as given
by an adversary, while the random perturbati®mepresents noise or uncertainty, independent of thelinitia
choice. This scenario is analogous to imeoothed analysisf algorithms proposed by Spielman and Teng,
where an algorithm is assumed to run on the worst-case inmdified by a small random perturbation.

In subsequent work, Krivelevich, Sudakov and Tetali [16hsidered random formulas obtained by
adding randomnk-clauses (disjunctions df literals) to a fixedk-SAT formula. They proved that for any
formula with at least*—¢ k-clauses, adding/(n*¢) random clauses of size makes the formula almost
surely unsatisfiable. This is tight, since there i5-8AT formula withn*~¢ clauses which almost surely
remains satisfiable after addingn*<) random clauses. A related question, which was raised irptper,
is to find a threshold for nog@-colourability of a random hypergraph obtained by addinglmam edges to a
large hypergraph of a given density.

While 2-colourability of graphs is well understood, being equévelto non-existence of odd cycles,
for k-uniform hypergraphs withk > 3 it is already N P-complete to decide whether 2colouring ex-
ists. Consequently, there is no efficient characterizadib2-colourable hypergraphs. The problem2f
colourability of randonk-uniform hypergraphs fok > 3 was first studied by Alon and Spencer. Recently,
the threshold for2-colourability has been determined very precisely. Aghte and Moore proved that
the number of edges for which a randdnuniform hypergraph becomes almost surely Recslourable is
(2¥=1In2 — O(1))n. Interestingly, the threshold for ndheolourability is roughly one half of the threshold
for k-SAT. Achlioptas and Peres proved that a formula witllandomk-clauses becomes almost surely un-
satisfiable forn = (2¥In2 — O(k))n. The two problems seem to be intimately related and it ismahto
ask what is their relationship in the case of a random peatiob of a fixed instance.

The proof of Krivelevich et al. (for randomly perturb&edSAT) also yields that for ang-uniform hyper-
graphH with n*—¢ edges, adding(n*¢) random edges destrogscolourability almost surely. Nonetheless,
it turns out that this is not the right answer. It is enoughge substantially fewer random edges to destroy
2-colourability: roughly a square root of the number of ramddauses necessary to destroy satisfiability.
Our main result is that for ang-uniform hypergraph witlf2(n*—<) edges, adding:(n*</?) random edges
makes it aimost surely no2+colourable. This is almost tight in the sense that addind</?) random edges
is not sufficient in general.

6 First Order Graph Properties

Oleg Pikhurko - First Order Graph Properties

Graph properties expressible in first order logic were stdi The vocabulary consists of variables,
connectives\(, A and—), quantifiers § andv), and two binary relations: the equality and the graph ajag
(= and~ respectively). The variables denote vertices only so wenatallowed to quantify over sets or
relations. The notatiod? = A means that a grapfy' is a model for asentenced (a first order formula
without free variables); in other wordd, is true for the grapld-.

A first order sentencel definesG if G is the unique (up to an isomorphism) finite model for The
quantifier depth(or simplydepth) D(A) is the largest number of nested quantifierstinThis parameter is
closely related to the complexity of checking whethiel= A. Let D(G) be the smallest quantifier depth of
a first order formula defining:.

In a sense, a defining formulican be viewed as the canonical form 1(except thatd is not unique):
in order to check whethe® = H it suffices to check whetheid = A. Unfortunately this approach does



not seem to lead to better isomorphism algorithms, but thi®n, being on the borderline of combinatorics,
logic and computer science, is interesting on its own andhtvigeld unforeseen applications.

Recently, various results on the valuesi®ofG) for ordern graphs appeared. The paper of Pikhurko,
Veith and Verbitsky studied the maximum &f(G) (the ‘worst’ case). The ‘best’ case is considered by
Pikhurko, Spencer, and Verbitsky, while Kim, Pikhurko, Bper and Verbitsky obtained various results for
the random grapli(n, p).

Pikhurko presented new results for random sparse strgctubeined jointly with Bohman, Frieze,
tuczak, Smyth, Spencer, and Verbitsky. Specifically, it wam/ed that almost surely

e D(G) = O(1), whereG is the giant component of a random gra@n, <) with constant > 1;

Inlnn

e D(T) = (1+0(1))22 whereT is a random tree of order.

Inlnn

These results rely on computing the maximumX(fT’) for a treeT" of ordern and maximum degrek so
this problem was studied as well.

7 Combinatorial Games

Thomas Bohman- Making and Breaking the Giant Component

| presented the following results at the workshop. We carsidgame that can be viewed as a random
graph process. The game has two players and begins with thty gnaph on a set of n vertices. During each
turn a pair of random edges is generated and one of the plelyeoses one of these edges to be an edge in the
graph. Thus the players guide the evolution of the grapheagd@ime is played. One player controls the even
rounds with the goal of creating a so-called giant compoasmjuickly as possible. The other player controls
the odd rounds and has the goal of keeping the giant from fayrfor as long as possible. We show that
the product rule is an asymptotically optimal strategy fothbplayers. (The product rule chooses between
two edges by comparing the products of the sizes of the coemisnoined. For example, the player who
is trying to create a giant component would choose the edgtentximized the product of the sizes of the
components joined.)

8 Geometric Problems

Imre Barany - On the Randomized Integer Convex Hull

This is joint work with J. Matogek.

AssumeK C R?is a convex body. Its integer convex hull is, by definitiorg tonvex hull of K N Z¢
whereZ? is the usual integer lattice. Notatioht k') = con K N Z<). The integer convex hull is of central
interest in integer programming. Define the lattice;, = p(Z¢+t) wheret € [0,1)P andp € SO(d), which
is an isometric copy oZ¢. The set of lattice = {L,,} is a probability space with probability measure
equal to the product of the Lebesgue measuréph)? and the Haar measure &fO(d). The randomized
integer convex hull id, (K) = con K N L), whereL is a random element af. I, (K) is a polytope.

Motivated by integer programming, we estimate the expentgdber of vertices of ; (K), and also
the expected missed volume, that is, the expectation dfval I, (K)). One of our results says that the
expected number of vertices 6f (K) is of order(vol(K))(@—1/(d+1) when K is smooth, and is of order
(logvol(K))4~! whenK is a polytope. The expected missed volume problem leade tolowing question
which is a distant relative of Buffon’s needle problem. Gieconvex bodys ¢ R?, what is the probability
that a randomly chosen congruent copyofs lattice point free? We show that this probability (1) iways
smaller thar, /vol(K) for ¢; constant, and (2) is larger thap/vol(K) for ¢ constant if the width off is
small enough. The constants depend only on dimension.

Ross M. Richardson- Random Inscribing Polytopes
This is joint work with Van Vu and Lei Wu.
Let K be a compact convex body R?. Choosen points uniformly inkX. The convex hull of these
n points is referred to as @ndom polytope The study of random polytopes is the study of certain key



functionals of these polytopes; the volume of the randonytppk and the number 6f-dimensional faces
are the most studied. There has been much recent progressirircharacterization, and a broad range of
techniques have arisen out of the intersection of geomatopability, and combinatorics. A comprehensive
survey by I. BEarany will soon appear in the volun&tochastic Geometry

Now restrict K to have smooth boundary and everywhere positive Gaussiaatare. We define a new
model of random polytopes where we now choose points on thaedasyo K according to some positive
continuous distribution. The convex hull af points chosen in this manner is referred to asrdredom
inscribing polytope

Our work focuses on determining the distribution of the wodufunctional, which we denote . We
prove a concentration result of the following form:

P (\Z —EZ| > \/W) < 2exp(—A/4) + exp(—cen),

where here > alnn/n, V = 0((@+3)/(4=1)) andc, o are constants. We can use this result to show that
the k™ moment)M,, satisfies
My = O(V*/?),

We can also prove better bounds, though with more compticati®r terms.

In contrast to the integral geometric methods typically Eyed to study random polytopes, we rely on
the notion ofe—nets and VC-dimension to control the relevant geometry. édacentration result employs
a special instance of a more general martingale concemirtiteorem due to Kim and Vu. In particular we
provide a quantitative notion of the volume added with thdit&mh of a new point to the random polytope
and show how this implies sharp concentration via the afergioned tools.

We also provide a lower bound on the variance of the volumetfanal as well as showing the volume
satisfies a central limit theorem.

9 Random Matrices

Van H. Vu - Singularity of Random Matrices

The study of random matrices is an important area of mathiesatith strong connections to various
other fields. One of the main objects in this area is matridegse entries are i.i.d. random variables. We
focus on the basic model in whidl,, is ann by n matrix whose entries are i.i.d. variables with Bernoulli
distribution (taking values-1 and1 with probability 1/2).

A famous problem is to estimate the probability thét is singular. Let us denote by, this probability.
SinceM,, is singular if it has two identical rows, it is trivial thaf, > (1/2 4 o(1))™. A notorious conjecture
in the field is that this bound is sharp:

Conjecture 9.1 p,, = (1/2 + o(1))™.

The first result concerning singularity was obtained by Kasnih 1967, who proveg, = o(1). Later,
he improved the bound t@(n~'/2). A significant progress was made in 1995, when Kahn, Kenaind
Szemeedi proved thap,, < .999" (see [13] and the references therein).

Recently, T. Tao and | made progress by further improvinguiyger bound td3/4 + o(1))™ [20]. We
discovered a surprising connection between problems aforammatrices and additive combinatorics. In
particular, the proof of the new bound uses various ingradirom additive combinatorics (in particular,
Freiman’s theorem).

The details are somewhat technical, but my feeling is thataBtimal bound1/2 + o(1))™ might be
within sight. In fact, | believe that any improvement upoa ttonstan8 /4 could perhaps lead to the solution
of the conjecture. Furthermore, our techniques can be umeotlier discrete distributions as well and in
certain cases we can obtain sharp results.

A closely related question is to estimate the probabilitgtth random symmetric matrix is singular.
Let Q,, be the random symmetric by n matrix whose upper diagonal entries are i.i.d. Bernoulid@am
variables. Weiss conjectured in the 1980s tBatis almost surely non-singular. Recently, Costello, Tao and
I confirmed this conjecture. Our proof again makes a detoadtbtive combinatorics, with the main lemma
being a quadratic version of the classical Littlewood-@ff&rdds problem [5].



There have been several further developments in the rédsefrandom matrices reported at BIRS:

(1) The singularity problem: Costello, Tao and | generaliige singularity result for random matrices
with arbitrary distribution. It seems that for any (diseetandom matrix with independent entries with
distributions not concentrated on one value, the proligltiiat the matrix is singular is exponentially small.

(2) Rank of random graphs: Costello reported a result shpttiat the threshold for singularity of (the
adjacency matrix of) a random graph(isgn)/n. (It is clear that below(log n)/n, the graph has isolated
vertices which correspond to all zero row; the main part isandle the other side of the threshold.) We have
extended this result to the following: For apy> (logn)/2n, the corank ofG(n, p) equals the number of
isolated vertices. As a corollary, it follows that the gianmponent has full rank.

(3) Richardson and Wu reported a result showing centrat timeiorems for random inscribing polytopes.
Barany and | extended these results for random polytopes sgamneoints sampled from the Gaussian
distribution.

10 Sequential Growth Models

Graham Brightwell - Classical Sequential Growth Models

Graham Brightwell gave a talk entitled “Classical SequarErowth Models”, including a discussion of
joint work with Nicholas Georgiou.

Classical sequential growth models were introduced by&itiand Sorkin in 2000; they are of particular
interest as they are the only models satisfying some nalawing conditions for discrete random models
of space-time.

A particular classical sequential growth model is define@lsgquence = (to, ¢1, . . .) of non-negative
constants. The process starts with the partial ofélewith one element labele@l At stagen = 1,2,...,
the element: is added toP,,_; and placed above all elements i»,, where D,, is a random subset of
{0,1,...,n—1}, the probability thaiD,, is equal to a seb being proportional te . The transitive closure
is taken to form the partial ordée?,,.

One can either stop after stagend study the finite partial order, or continue to get a plastider on the
set of non-negative integers.

Special cases include random forests€ ¢t; = 1, ¢; = 0 for ¢ > 2), and random binary orders;(is
the highest non-zero entry). Although random binary ordeesvery sparse, it is nevertheless the case that,
a.s., in the infinite partial order, every element is incorapke with finitely many others. In a recent paper,
Georgiou proves that, for any> 0, most elements are incomparable with at most*¢ other elements.

A random graph order, also known as a transitive percolgtimeess, is defined by taking a random
graphG(n,p) on the vertex sef0,...,n — 1}, and putting: below j if there is a path = 41,...,i; = j
in the graph withi; < ... < i;,. This is equivalent to a classical sequential growth mod#i vy, = ¢,
t=p/(1—p).

In a later paper, Rideout and Sorkin provide computation@esce that suitably normalized sequences
of random graph orders have a “continuum limit”. Brightwaatid Georgiou use results about the structure of
random graph orders to confirm that this is indeed the caskslamwed that the continuum limit is always a
semiorderyi.e., a partial order representable by unit intervals @lithe, one below another if it lies entirely to
the left. Alternatively, a semiorder is a partial order @ning no induced copy of either of the two specific
partial ordersl + 3 and2 + 2.

It might be hoped that sequences of classical sequentiaitignmodels can have more interesting con-
tinuum limits, in particular ones that bear a closer resamt# to 4-dimensional Minkowski space-time.
However, Brightwell and Georgiou show that classical setjakegrowth models are all “almost” semiorders,
so that any continuum limit must also be very close to beingraigrder.

To be more precise, Brightwell and Georgiou show that, for sequence P, }5° ,, where P, is a
classical sequential growth model stopped at stagthe proportion of 4-element subsets isomorphic to
eitherl + 3 or 2 + 2 tends to 0 a® tends to infinity.

11 Markov Chain Mixing Times

Prasad Tetali- Analysis of Markov Chain Mixing Times
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Prasad Tetali gave a brief update on some recent progress analysis of Markov chain mixing times.
The update included the status of several long-standing ppEblems, as well as recent theoretical develop-
ments in the topic.

The update on the theoretical development focused on isogtic and functional approaches to bound-
ing mixing times. It is well known that the spectral gap of arktav chain can be estimated in terms of
conductance, facilitating isoperimetric bounds on mixiimge. Observing that small sets often have large
conductance, Lddsz and Kannan refined this result by bounding the totalt@mianixing time for reversible
chains in terms of the “average conductance” taken overdgetarious sizes. Morris and Peres introduced
the idea of evolving sets and strengthened thelsavKannan result by extending the results to bound.the
mixing time. Side-stepping conductance (and using a maeeediunctional approach, along the lines of the
works on manifolds by Coulhon, Grigor'yan, and Pittet), Gdéontenegro, and Tetali recently introduced
the notion of “spectral profile” to bound> mixing time. Standard Cheeger-type inequalities showttieat
spectral profile bounds imply the conductance bounds. Eurtbre, the known estimates on mixing times
using Logarithmic Sobolev inequalities and Nash inequalitan also be derived easily with the spectral
profile approach.

The strength of the above isoperimetric and spectral prigfdbniques has further been demonstrated in
card-shuffling: A recent breakthrough result of Ben Mornievides an upper bound af** on the mixing
time of the so-called Thorp shuffle on a card-deck of 8izgesolving a long-standing conjecture. The result
of Morris has already been improvedd® using the new technique of spectral profile. Morris used tingp
and evolving sets techniques to prove his result, while anesurvey-style article by Montenegro and Tetali
illustrates the derivation of thé*® mixing time for the Thorp shuffle using each technique — spéprofile
as well as the evolving sets.

Tetali's report also mentioned that progress has been stowtlwer problems, most notably (random)
sampling of contingency tables, which are of interest itistias. The same is true for acyclic orientations,
matroid bases, and Euler tours, all of which are of inter@sbmbinatorialists. The need for new techniques
in facilitating a tighter analysis of additional Markov ¢ha such as triangulations of regular polygons and
card-shuffling on general graphs has also been made clear.
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