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A BRIEF INTRODUCTION

The idea of building mathematical structures out of local data has been a
cornerstone of both modern Mathematics and Physics. Manifolds, distributions,
simplicial complexes, vector bundles, and homogeneous spaces attest to this fact.
The mathematical tools that measures the obstruction preventing us from gluing
local data in a compatible way are the various cohomology theories.

In the middle of the last century the theory of algebraic varieties was es-
tablishing itself as a invaluable tool that allowed “geometric methods” to be
applied to arithmetical questions. But already A. Weil had explicitly singled
out that one of the most powerful classical tools, namely the construction of
the quotient of a manifold by the action of a Lie group (homogeneous spaces),
had no successful analogue for algebraic groups acting on varieties. (The reason
being that the Zariski topology of a variety, which plays the role of the classical
topology for a manifold, is too weak: there are too few open sets to trivialize
actions, and these sets are too big). The answer to this riddle came from the
work of Serre and of Grothendieck. The resulting theory of principal homo-
geneous spaces (Torsors for short), hinges around endowing schemes with the
étale topology, and using various theories of “descent” to produce a coherent
cohomology theory to go with it.

Several of the fundamental problems in algebra and number theory are re-
lated to the problem of classifying G-torsors and in particular of computing the
Galois cohomology H1(k, G) of an algebraic group G defined over an arbitrary
field k. The study of Galois cohomology is still in its early stages and many nat-
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ural questions and long standing conjectures are still open. During the past two
decades new insight into this theory began arising under the influence of alge-
braic geometry and algebraic K-theory. We note that new possibilities provided
by algebraic K-theory still only begin to manifest themselves in full strength.

It has also recently become apparent that torsors can also be used to under-
stand affine Kac-Moody Lie algebras and groups and superconformal algebras.
It is possible, but at this point not known, that these methods could extend
to a more general class of Lie algebras (Extended Affine Lie Algebras) around
which there is today a considerable amount of interest.

Exploring the connections between these two aspects of torsors: The alge-
braic Geometry on one hand, and the infinite dimensional Lie theory on the
other, was one of the purposes of the meeting.
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SUMMARIES OF TALKS

G–forms and cohomological invariants

by E. Bayer–Fluckiger (EPFL Lausanne, Switzerland)

Let k be a field of characteristic 6= 2. Milnor’s conjecture, recently proved by
Voevodsky, provides a classification of quadratic forms over k up to isomorphism.
This gives hope for progress in related questions, for instance the classification
of quadratic forms invariant by a finite group.

Let G be a finite group. One of the natural examples of G–forms is given
by trace forms of G–Galois algebras. If L is a G–Galois algebra, let us denote
by qL its trace form. Let q0 be the unit G–form – if we denote by L0 the split
G–Galois algebra, then we have qL0

= q0. If G has odd order, then it is known
that qL 'G q0 (where 'G denotes G–compatible isometry). If the 2–Sylow
subgroups of G are elementary abelian of rank r, then in a joint paper with
J–P. Serre we give a complete criterion for the isomorphis of the trace forms
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of two G–Galois algebras in terms of an r–dimensional mod 2 cohomological
invariant.

Let us denote by W (k) the Witt ring of the field k, and let I = I(k) be
the ideal of even dimensional quadratic forms. Let d be the 2–cohomological
dimension of k. Let L and L′ be two G–Galois algebras. Then Milnor’s con-
jecture implies that if φ ∈ Id, then the quadratic forms φ ⊗ qL and φ ⊗ qL′

are isomorphic. Philippe Chabloz recently proved that these forms are actually
isomorphic as G–forms. Going futher in this direction, note that Milnor’s con-
jecture implies that if φ ∈ Id−1 and if we denote by ed−1(φ) its cohomological
invariant, then φ ⊗ qL ' φ ⊗ qL′ if and only if ed−1(φ) ∪ d(qL) = ed−1 ∪ d(qL′).
This talk presented some partial generalisations of this fact. One can define

a notion of G–discriminant for qL, denoted by dG(qL). It is then natural to
conjecture that φ ⊗ qL and φ ⊗ qL′ are isomorphic as G–forms if and only if
ed−1(φ) ∪ dG(qL) = ed−1 ∪ dG(qL′). This is known in some cases, by the work
of Chabloz, Monsurro, Parimala, Schoof and the author.

Essential dimension of homogeneous forms

by G. Berhuy (Nottingham University, UK)

The essential dimension of an algebraic structure is roughly the minimal
number of independent parameters needed to describe it up to isomorphism.
This notion has been defined first by Reichstein an Buhler for Galois extensions
of given group G in a more geometric way, then extended to any G-torsor by
Reichstein ( where G is an algebraic group defined over an algebraically closed
field of characteristic 0).

In this talk, we compute the essential dimension of the generic homogeneous
polynomial of degree d in n variables when the g.c.d. of n and d is a (possibly
trivial) prime power. For this, we define a new numerical invariant attached to
G-torsors in a geometric way, namely the canonical dimension. We then relate
the canonical dimension of a certain GLn/µd-torsor to the essential dimension
of the generic homogeneous polynomial, and we use the properties of canonical
dimension to compute it.

The algebraic connective K-theory

by S. Cai (UCLA, USA)

By using the Brown-Gersten-Quillen spectral sequence, we give a simple
definition of the algebraic connective K-theory, the universal homology theory
overriding the K-homology (chow groups) and algebraic K-theory. The defi-
nition of a homology theory (a Borel-Moore functor) is verified, and standard
properties are proved. Relations with K-homology and K-theory are explored.
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Groupe de Picard et groupe de Brauer des compactifications lisses
d’espaces homogènes, I et II

by J-L. Colliot-Thélène (Université Paris-Sud, France)

et B. È. Kunyavskĭı (Bar-Ilam University, Israel)

Soit k un corps de caractéristique nulle, k une clôture algébrique de k, et
g = Gal(k/k). Soient G un k-groupe connexe et X/k un espace homogène de
G. Le stabilisateur géométrique, c’est-à-dire le groupe d’isotropie d’un k-point
de X = X×k k est bien défini à k-isomorphisme non unique près. On note H ce
groupe. Supposons le groupe H connexe. Il y a alors un k-tore T naturellement
associé au G-espace homogène X , tel que T soit le plus grand quotient torique

H
tor

de H . Soit Xc une k-compactification lisse de X . La k-variété Xc est
unirationnelle, le groupe de Picard Pic(Xc) est un g-module continu discret
Z-libre de type fini et le groupe Br(Xc) est fini. On note Br1(Xc) le noyau
de l’application de restriction Br(Xc) → Br(Xc). Le quotient du groupe de
Brauer Br1(Xc) par l’image du groupe Br(k) est un sous-groupe du groupe fini
H1(g, Pic(Xc)).

À tout g-module continu discret M et tout entier naturel i on associe le
groupe

Shai
ω(k, M) = Ker[H i(g, M) →

∏

h

H i(h, M)],

où h parcourt les sous-groupes fermés procycliques de g.

Théorème A Soient k un corps de caractéristique nulle, G un k-groupe
linéaire connexe, X une k-variété espace homogène de G, de stabilisateur géo-
métrique connexe. Soit Xc une k-compactification lisse de X.

(i) Le g-module Pic(Xc) est un g-module flasque, c’est-à-dire que pour tout
sous-groupe fermé h ⊂ g, on a H1(h, HomZ(Pic(Xc),Z)) = 0, soit encore
Ext1h(Pic(Xc),Z) = 0.

(ii) Pour tout sous-groupe fermé procyclique h ⊂ g, on a H1(h, Pic(Xc)) = 0.
(iii) Soit T le k-tore associé au G-espace homogène X, et soit T̂ son groupe

des caractères. Si G est un groupe linéaire quasitrivial, i.e. extension d’un k-
tore quasitrivial par un k-groupe simplement connexe, alors le quotient du groupe
Br1(Xc) par l’image du groupe Br(k) s’injecte dans le groupe Sha1

ω(k, T̂ ), et est
isomorphe à ce dernier groupe si X(k) 6= ∅ ou si k est un corps de nombres.

Sous l’hypothèse de (iii), nous montrons comment le g-module Z-libre de
type fini Pic(Xc) est déterminé, à addition près d’un g-module de permutation,
par le k-tore T – en particulier il ne dépend pas du groupe quasi-trivial G.

Ce théorème est une extension naturelle de résultats connus dans le cas où
H = 1 (Voskresenskĭı 1975, Colliot-Thélène et Sansuc 1976, Borovoi et Kun-
yavskĭı 2004). Ces résultats furent rappelés dans le premier exposé.

Un ingrédient important de la démonstration du théorème A est le théorème
suivant, pour la démonstration duquel un ingrédient essentiel nous a été suggéré
par O. Gabber.
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Théorème B Soit A un anneau de valuation discrète de corps des fractions
K, de corps résiduel k de caractéristique nulle. Soit G un K-groupe quasitrivial
et soit E/K un G-espace homogène de stabilisateur géométrique connexe et de
tore associé trivial. Soit X un A-schéma propre, régulier, intègre, dont la fibre
générique contient E comme ouvert dense. Alors il existe une composante de
multiplicité 1 de la fibre spéciale de X/A qui est géométriquement intègre sur
son corps de base k.

Totaro’s question on zero-cycles on G2, F4, and E6 torsors

by S. Garibaldi (Emory University, Atlanta, USA)

It is a natural naive question to ask: How can one tell if a collection of
polynomial equations has a common solution over a given field k? A more
sophisticated version of this question asks: If a variety X has a zero-cycle of
degree 1, does X necessarily have a k-point, i.e., a closed point of degree 1?
Various examples show that some restrictions on the variety X are necessary
for a positive answer. Several people (Veisfeiler, Serre, Colliot-Thélène) have
suggested hypotheses that may be sufficient to guarantee a positive answer.

In a 2004 paper, Totaro asked whether a G-torsor X that has a zero-cycle
of degree d > 0 will necessarily have a closed étale point of degree dividing d,
where G is a connected linear algebraic group. This question is closely related
to several conjectures regarding exceptional algebraic groups. Totaro gave a
positive answer to his question in the following cases: G simple, split, and of
type G2, type F4, or simply connected of type E6. Detlev W. Hoffmann and I
proved that the answer is also “yes” for all groups of type G2 and some nonsplit
groups of type F4 and E6. We make no restrictions on the characteristic of the
base field. The key tool is a lemma regarding linkage of Pfister forms.

Twisted forms of toroidal Lie algebras

by P. Gille (Université Paris-Sud, France)
jointly with A. Pianzola (University of Alberta, Canada)

The main thrust of our project is the study of Toroidal Lie algebras via co-
homological methods This leads us to the theory of reductive group schemes as
developed by M. Demazure and A. Grothendieck [8]. More precisely, Algebraic
Principal Homogeneous Spaces (also called Torsors for short) and their accom-
panying non-abelian étale cohomology, arise naturally once this new point of
view is taken into consideration.

Let A be a finite dimensional algebra over a field k. An R-form of A is an
algebra L over R for which there exists a faithfully flat and finitely presented
extension S/R such that

L ⊗R S 'S A ⊗k S

(isomorphism of S-algebras).
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Since A⊗kS ' (A⊗kR)⊗RS, the R-algebra L is nothing but an R-form (triv-
ialized by SpecS in the flat topology of SpecR) of the R-algebra A ⊗k R. Since
SpecR is affine, the isomorphism classes of such R-algebras are parametrized by
H1(R, Autk AR) (pointed set of Cěch cohomology on the flat side of SpecR with
coefficients on Autk AR). The group sheaf Autk AR is in fact an affine R-group
scheme (because A is finite dimensional). If Autk A is smooth (for example if
char k = 0), then S may be assumed to be an étale cover.

Because of connections with Extended Affine Lie Algebras (EALAs for short),
the case when R is a ring of Laurent polynomial in finitely many variables is
of special importance (one variable corresponding the affine Kac-Moody case ).
For simplicity, we will restrict our attention to this special this case.

We assume henceforth that k is of characteristic 0. Fix n ≥ 0 and let

Rn = k[t±1
1 , . . . t±1

n ]. For any positive d, define Rn,d = k[t
± 1

d

1 , t
± 1

d

2 , · · · t
± 1

d
n ], and

let Rn,∞ be the inductive limit of all the Rn,d.

By definition, forms are trivialized in some fppf extension of the base ring.
In the case of Laurent polynomials, one has very precise control over the trivi-
alizing base change.

Theorem Let A be a finite dimensional k-algebra. Every Rn-form L of A
is isotrivial (i.e. trivialized by a finite étale cover of Rn). More precisely, there
exist a finite Galois extension K/k and a positive integer d such that

L ⊗Rn
(Rn,d ⊗k K) 'Rn,d⊗kK A ⊗k (Rn,d ⊗k K).

Similarly, every reductive group scheme over Rn is isotrivial.

Multiloop algebras are the quintessential examples of forms. Assume k to
be algebraically closed, and fix once an for all a compatible family (ζn)n>0 in
k× of primitive roots of unity (thus ξh

hd = ξd).
We begin by introducing the ingredients needed in the definition of mul-

tiloop algebras. Let σ = (σ1, . . . , σ`) be a commuting family of finite order
automorphisms of the k-algebra A. Let mi be the order of σi.

For each (i1, ..., in) ∈ Z
n, consider the simultaneous eigenspaces

Ai1...in
:= {x ∈ A : σj(x) = ξij

mj
for all 1 ≤ j ≤ n}

(which of course depend only on the ij modulo the mj). Finally, consider the

rings extension Rn ⊂ Rn,m = k[t
±1/m1

1 , . . . , t
±1/mn
n ] where m = (m1, ...,mn).

The multiloop algebra associated to this data is the k-algebra

L = L(A, σ) = ⊕Ai1...in
⊗ ti1/m1 . . . tin/mn

n ⊂ A ⊗k Rn,m

Observe that L has a natural Rn-algebra structure. One easily verifies that
L ⊗Rn

Rn,m 'Rn,m
A ⊗k Rn,m, and that Rn,m/R is free of finite rank (hence

fppf . In fact étale and even Galois). Thus L is an Rn-form of A which is
trivialized by the extension Rn,m/Rn.
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Let g be a finite dimensional split simple Lie algebra over an algebraically
closed field k of characteristic zero. In nullity 1 loop algebras provide us with
concrete realization of the affine Kac-Moody algebras (a result of V. Kac). We
can in fact prove a much stronger assertion: In nullity 1 every form of g is a
loop algebra. This follows from the following result of Pianzola.

Theorem Let G be a reductive group scheme over R1 = k[t±1
1 ]. Then

H1(k[t±1
1 ],G) = 1.

This result ought to be thought as a the validity of “Serre Conjecture I ” for
k[t±1

1 ] (the usual Conjecture I, which is consequence of a Theorem of Steinberg,
corresponding to the generic fiber of R1; namely the function field k(t1)).

With this in mind, we now turn our attention to the case n = 2 where some
interesting and unexpected behaviour arises. Assume now that K is a field
of dimension 2. Serre’s Conjecture II asserts that H1(K,G) = 1 whenever G
is a semisimple algebraic of simply connected type. At the present time, this
conjecture is still open. There is however one case where the conjecture is known
to hold, and this is precisely the case when K = k(t1, t2).

By analogy with the one dimensional case, it seems inevitable to raise the
following.

Question. Let G be a semisimple group scheme over R = k[t±1 , t±1
2 ]. Assume

G is of simply connected type. Is H1(R,G) trivial? . More generally, if G/R

is semisimple and λ : G̃ → G is its universal covering with (central) kernel µ,
is the boundary map H1(R,G) → H2(R, µ) bijective ?

We have shown that the the boundary map H1(R,G) → H2(R, µ) is always

surjective. Furthermore, if G is split, then H1(R, G̃) = 1 (and therefore the an-
swer to the above question is positive). But somehow surprisingly however, the
answer in general is negative (we have constructed an explicit counterexample,
but the classification of these exotic objects seems hard). The failure seems to
be directly related to anisotropic kernels.

Diagrams and torsors

by J.F. Jardine (University of Western Ontario, London, Ontario,
Canada)

Maps between objects X and Y in a homotopy category can be identified
with path components of a category of cocycles, in great generality. This cor-
respondence can be used to give a simple demonstration of the identification
of isomorphism classes of torsors (torsors are generalizations of principal bun-
dles) for sheaves of groups G with maps in the homotopy category of simplicial
sheaves. This identification is a homotopy theoretic classification G-torsors;
this classification result has been known at this level of generality since the late
1980s, but the new proof is much simpler and more conceptual.

A G-torsor can be characterized as a sheaf X admitting a G-action for which
the corresponding Borel construction EG ×G X is isomorphic to a point in the
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homotopy category of simplicial sheaves. More generally, for arbitrary index
categories I , I-torsors are defined to be diagrams of weak equivalences which
have trivial homotopy colimits. Using the machinery of Quillen’s Theorem B
(which is one of the main foundational results of algebraic K-theory), one can
show that homotopy colimit and derived pullback together define a bijection

[∗, BI ] ∼= π0(I −Tors)

relating morphisms from a point to BI in the homotopy category with the set of
path components of the category of I-torsors. This definition of I-torsor and the
homotopy classification both exist quite generally, and specialize to definitions
of higher torsors and motivic torsors with corresponding homotopy classification
results.

Higher torsors can be thought of as special types of diagrams which take
values in simplicial sheaves, and are defined on sheaves of categories I enriched in
simplicial sets. Sheaves of groupoids enriched in simplicial sets are the objects of
a homotopy theory which is equivalent to the full homotopy theory of simplicial
sheaves, for which the fibrant objects represent higher stacks. The homotopy
classification result for higher torsors does not depend on the theory of higher
stacks, and the result for the full category of sheaves of categories enriched in
simplicial sets was unexpected.

A bound for canonical dimension of the (semi-)spinor groups

by N. Karpenko (Universite d’Artois, Lens, France)

In the talk we discuss the canonical dimension cd(G) of a linear algebraic
group G defined over a field F which was introduced recently by Berhuy–
Reichstein. The general question raised by Berhuy–Reichstein is to determine
cd(G) for every split simple algebraic group G.

For the spinor group, representing a particularly difficult case of the above
general question, one knows that cd (Spin2n+1) = cd (Spin2n+2), so that we will
discuss only cd(Spin2n+1) here.

Although the canonical dimension of, say, a smooth projective variety X
can be expressed in terms of algebraic cycles on X , there are no general recipes
for computing cd(X) or cd(G). A better situation occurs with the canonical
p-dimension cdp, a “p-local version” of cd, where p is a prime: a recipe for
computing cdp(G) of an arbitrary split simple G is obtained by Merkurjev and
Karpenko. In particular, one has

cd2(Spin2n) =
n(n − 1)

2
− 2l + 1 ,

where l is the minimal integer such that 2l ≥ n + 1 (and for any odd prime
p, one has cdp(Spin2n+1) = 0). Since cd (G) ≥ cdp(G) for any G and p, we
have a lower bound for the canonical dimension of the spinor group, given by
its canonical 2-dimension.
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We establish the following upper bound for spinor groups:

cd (Spin2n+1) ≤ n(n − 1)/2.

This result improves the previously known upper bound n(n + 1)/2, estab-
lished by Berhuy–Reichstein. The proof makes use of the theory of non-negative
intersections, of duality between Schubert varieties, and of the Pieri formula for
a variety of maximal totally isotropic subspaces.

Note that the lower bound for cd(Spin2n+1), given by cd2(Spin2n+1), coin-
cides with our upper bound if (and only if) n + 1 is a power of 2. Therefore, for
such n, we get the precise value: if n + 1 is a power of 2, then

cd(Spin2n+1) = cd(Spin2n+2) =
n(n − 1)

2
.

Our second main result is the following upper bound for the semi-spinor
groups Spin∼

2n+2, obtained by the similar technique: for any odd one has

cd(Spin∼
2n+2) ≤ n(n − 1)/2 + 2k − 1,

where k = v2(n + 1) (the 2-adic order of n + 1).
Importance of the spinor and semi-spinor groups in this context is explained

by the fact that these groups represent the only difficult cases of the following
general question: let G be a split simple algebraic group, having a unique torsion
prime p (a prime p is a torsion prime of G if and only if cdp(G) 6= 0); is it true
that cd(G) = cdp(G)?

Zero cycles on homogeneous varieties

by D. Krashen (IAS, Princeton)

The study of projective homogeneous varieties and their invariants has been
a source of many interesting problems and has various applications in recent
years. For example, Panin’s description of the algebraic K-theory of homoge-
neous varieties has resulted in the useful index reduction formulas of Merkurjev,
Panin and Wadsworth. The study of algebraic cycles and the motives of these
varieties has also played an important role in quadratic form theory, and in par-
ticular, Voevodsky’s proof of the Milnor conjecture. The structure of the Chow
groups and motives of these varieties continues to be an active area of research
with many unresolved questions.

In the talk, we introduce tools for studying the Chow group of 0-dimensional
cycles on a projective variety using results from Suslin and Voevodsky’s work on
algebraic singular homology. This allows us to connect the study of the group
of zero cycles to studying the more geometrically naive notion of R-equivalence
(i.e. connecting points with rational curves) on symmetric powers of the original
variety.

We apply these ideas by showing that the symmetric powers of certain ho-
mogeneous varieties may be related to spaces which parametrize commutative
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étale subalgebras in a central simple algebra. To make this precise, we define
moduli spaces of étale subalgebras in a central simple (or Azumaya) algebra.
These spaces are very interesting in their own right, as many open questions in
the area of central simple algebras concern the existence and structure of cer-
tain types of subfields in a division algebra. We show that in certain cases these
moduli spaces are R-trivial, and we apply this to determining the Chow group
of zero cycles for certain homogeneous varieties. This allows us to show that
the Chow group of zero dimensional degree zero cycles is trivial for involution
varieties as well as for certain Severi-Brauer flag varieties. This was previously
known to be true for involution varieties of index no more than 2 (by work of
Swan, Karpenko and Merkurjev) and for Severi-Brauer varieties (by work of
Panin).

On Cachazo-Douglas-Seiberg-Witten Conjecture for simple Lie
algebras

by S. Kumar (University of North Carolina at Chapell Hill, USA)

Let g be a finite dimensional simple Lie algebra over the complex numbers.
Consider the exterior algebra R := ∧(g ⊕ g) on two copies of g. Then, the
algebra R is bigraded with the two copies of g sitting in bidegrees (1,0) and
(0,1) respectively. To distinguish, we will denote the first copy of g by g1 and
the second copy of g by g2.

The diagonal adjoint action of g gives rise to a g-algebra structure on R
compatible with the bigrading. We isolate three ‘standard’ copies of the adjoint
representation g in R2, where R2 is the total degree 2 component of R. The
g-module map

∂ : g → ∧2(g), x 7→ ∂x =
∑

i

[x, ei] ∧ fi,

considered as a map to ∧2(g1) will be denoted by c1, and similarly,

c2 :g → ∧2(g2), and

c3 :g → g1 ⊗ g2, x 7→
∑

i

[x, ei] ⊗ fi,

where {ei}i≤i≤N is any basis of g and {fi}1≤i≤N is the dual basis of g with
respect to a normalized Killing form 〈 , 〉 of g. We denote by Ci the image of
ci.

Let J be the (bigraded) ideal of R generated by the three copies C1, C2, C3

of g (in R2) and define the bigraded g-algebra

A := R/J.

The Killing form gives rise to a g-invariant S ∈ A1,1 given by

S :=
∑

i

ei ⊗ fi.
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Motivated by supersymmetric gauge theory, Cachazo-Douglas-Seiberg-Witten
made the following conjecture. They proved the conjecture for classical g. Sub-
sequently, Etingof-Kac proved the conjecture for g of type G2 by using the
theory of abelian ideals in b.

Conjecture [CDSW] (i) The subalgebra Ag of g-invariants in A is generated,
as an algebra, by the element S.

(ii) Sh = 0.
(iii) Sh−1 6= 0, where h is the dual Coxeter number.

The aim of this work is to give a uniform proof of the above conjecture part
(i). In addition, we give a conjecture, the validity of which would imply part
(ii) of the above conjecture.

To prove part (i), we first prove that the graded algebra Bg is isomorphic
with the singular cohomology of a certain (finite dimensional) projective subva-
riety Y2 of the infinite Grassmannian Y associated to g, where B := R/〈C1⊕C2〉.
The definition of the subvariety Y2 is motivated from the theory of abelian ideals
in the Borel subalgebra b of g. This isomorphism is obtained by using Garland’s
result on the Lie algebra cohomology of û := g ⊗ tC[t]; Kostant’s result on the
‘diagonal’ cohomolgy of û and its connection with abelian ideals in b; and a cer-
tain deformation of the singular cohomology of Y introduced by Belkale-Kumar.

Steenrod operations in algebraic geometry

by A. Merkurjev (UCLA, USA)

Steenrod operations in algebraic geometry were originally defined by Vo-
evodsky in the context motivic cohomology. P.Brosnan found an elementary
definition of the Steenrod operations on the Chow groups of algebraic varieties.
His definition uses equivariant Chow groups of Edidin and Graham and the
construction relies on embedding to a smooth scheme.

In the talk a new direct construction of the Steenrod operations modulo 2 is
presented. Namely, the Steenrod operations (of homological type) of a scheme
X are defined as the Segre classes of the tangent cone of X . All the standard
properties of the Steenrod operations can be proven directly.

Non-commutative version of purity

by I. Panin (Steklov Institute, St. Petersburg, Russia)

Let F be a covariant functor from the category of commutative rings to the
category of sets. We say that F satisfies purity for R if

⋂

htp=1

Im [F(Rp) → F(K)] = Im [F(R) → F(K)].

For certain functors F(R) injects into F(K) for all regular local rings R. In this
case the purity of F for R implies that

⋂

htp=1

F(Rp) = F(R) ⊂ F(K).
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Now we switch to a specific functor. For that consider a characteristic zero
field k, a reductive algebraic k-group G (connected one) and a functor F which
takes a commutative k-algebra R to H1

ét
(R, G). We make the following conjec-

ture:

the functor F satisfies the purity for regular local rings containing k.

The conjecture is a kind of extension of the known conjecture of A. Gro-
thendieck and J.-P. Serre. They conjectured the injectivity. Here a purity is
conjectured. It can be viewed as a non-commutative version of Gersten’s con-
jecture in K-theory. In the talk we discussed in certain details this conjectures
for interesting examples of reductive groups like PGLn, SL1,A, O(q), SO(q).

Algebras of prime degree over function fields of surfaces

by R. Parimala (Tata Institute, Mumbai, India)
jointly with M. Ojanguren (Lausanne University, Switzerland)

It is an open question whether division algebras of prime degree are cyclic.
Over number fields, cyclicity of all central simple algebras is a classical theorem
due to Hasse-Brauer-Noether. Further the index and the exponent coincide for
all division algebras over a number field. Artin raised the question whether
the index and the exponent coincide for central simple algebras over a C2-field.
Artin’s question is answered in the affirmative for function fields of surfaces
over an algebraically closed field of characteristic zero by de Jong. We explain
a method of proof of cyclicity of prime degree algebras over such fields using de
Jong’s techniques.

Tori in quasi-split groups

by M. S. Raghunathan (Tata Institute, Mumbai, India)

In this talk a proof of the following result was outlined:

Let k be any field and G a quasi-split k-algebraic group, S a maximal k-
split torus in G, Z(S) = T the centraliser of S and N(S) the normaliser of S.
Let W = N(S)/Z(S) be the Weyl group-scheme over k. Let i : W ↪→ Aut(T )
be the natural inclusion. Now k-isomorphism classes of tori of dimension l
(= dimension T ) are in bijective correspondence with elements of the Galois
cohomology set H1(k, Aut(T )). A necessary and sufficient condition that a torus
B over k is realisable as a k- subtorus of G is that class [B] of B in H1(k, Aut(T ))
be in the image of H1(k, W ). This is a consequence of the following stronger
assertion: let π : H1(k, N(T )) −→ H1(k, W ) and i : H1(k, N(T )) −→ H1(k, G)
be the natural maps. Then π maps kernel i(= i−1(trivial class in H1(k, G))
onto H1(k, W ).

A key ingredient of the proof is the theorem of Steinberg that every regular
semisimple k-conjugacy class in G contains a k-rational point.
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Group-theoretic compactification of Bruhat-Tits buildings

by B. Rémy (Lyon 1, France)
jointly with Yves Guivarc’h (Rennes 1, France)

Let G be a simply connected semisimple algebraic group, defined over a
non-archimedean local field F . We denote by GF the locally compact group of
its rational points, and we denote by X the Bruhat-Tits building of G/F . We
are interested in compactifying the vertices VX of X by group-theoretic means,
so that we eventually obtain structure results on the rational points GF (i.e.
parametrizations of remarkable classes of closed subgroups of GF ). We first
prove convergence of some sequences of compact open subgroups of GF in the
Chabauty topology. This enables us to define the desired compactification of
VX . We obtain then a structure theorem showing that the Bruhat-Tits buildings
of the Levi factors all lie in the boundary of the compactification. We obtain an
identification theorem with the polyhedral compactification, previously defined
by E. Landvogt. We finally prove two parametrization theorems extending the
correspondence between maximal compact subgroups and vertices of X : one is
about Zariski connected amenable subgroups, and the other is about subgroups
with distal adjoint action.

Cyclic algebras over p-adic curves

by D. Saltman (Texas University, USA)

The study of the structure of division algebras goes back 150 years since they
were first defined. The issue has always been how to describe their structure.
The first examples of division algebras were so called cyclic algebras - defined
simply using a cyclic Galois extension. Since then non-cyclic algebras have been
found, but only with complicated (precisely composite) degree, where the degree
of a division algebra is an integer describing its size. Thus in some ways the first
question about division algebras is still unsolved, namely, whether all division
algebras of prime degree are cyclic.

Another strain in the theory of division algebras is their study over special
fields, where over time the “special” fields have gotten more and more general.
This approach is best illustrated by the Hasse-Brauer-Noether-Albert theorem
that all division algebras over global fields are cyclic. In this talk we discussed
a “higher dimensional” special field, namely, the function field of a curve over a
p-adic field. What we showed was that when q is a prime not equal to p, then
any division algebra of degree q over such a field is cyclic.

Of equal importance to the actual result is the methods we used. The fields
we are concerned with are best viewed as the function field of surfaces S over
the p-adic integers. By a result of Grothendieck, such surfaces have Brauer
group 0. What this means is that the division algebras over such surfaces are
determined by their so called “ramification”. As a consequence of this, showing
that a division algebra is cyclic is equivalent to showing that one can “split”
its ramification by a cyclic Galois extension of the right size. It turn out that
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another way to view this result is that it is a result on splitting ramification over
surfaces, and as such it has had application to a much broader class of fields
than treated here.

The arguments of Grothendieck and Tits on splitting fields

by B. Totaro (Cambridge University, UK)

One of the great achievements of mathematics is the 19th-century classifi-
cation of the simple Lie groups by Killing and Cartan. There are four infinite
families of groups and just five exceptional groups. Chevalley showed in 1958
that the same classification works for the simple algebraic groups over any al-
gebraically closed field.

The classification of simple algebraic groups over an arbitrary field is much
richer. It includes as a special case some of the fundamental problems of algebra,
such as the classification of quadratic forms over an arbitrary field. Nonetheless,
one can hope to answer basic questions such as: given a simple algebraic group
of a given type over a field, what degree of field extension is needed to make it
into the standard (Chevalley) group?

Using the idea of torsors, and the definition of the Chow ring of a classifying
space, we give an improved proof of a theorem by Grothendieck which gives
a strong connection between the classification of simple algebraic groups over
arbitrary fields and the topology of the corresponding compact Lie groups.

As a result, we can do topological calculations and read off information about
splitting fields. Tits solved these problems for many types of groups, but we are
able to solve these problems in the remaining cases, notably for the groups E8

and Spin (n). We find, for example, that any algebraic group of type E8 over
any field becomes isomorphic to the Chevalley group E8 after a field extension
of degree dividing 2880. The number 2880 is best possible. This is satisfying in
that questions about E8, the largest exceptional Lie group, have often been the
hardest of all questions about Lie groups.
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