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1 Summary

The objective of this workshop was to bring together researchers with a strong interest in optimization algo-
rithms based on monotone operator theory splitting, Both from mathematics and from the applied sciences,
in order to survey the state-of-the-art of theory and practice, to identify emerging problems driven by appli-
cations, and to discuss new approaches for solving these problems.

Many of the participants had not met before. Various connections between diverse researchers have
been established and strengthened. We thus expect this workshop to be the springboard for new innovative
research and collaborations by its unique mix of experts whose areas of applications are broad, ranging from
variational analysis, numerical linear algebra, machine learning, computational physics and crystallography.

2  Overview of the Field and Relationship with the Workshop

Over the past decade, many variants of operator splitting methods have been (re)discovered, and some of
these have found unexpected applications [39]. These methods have been applied in a plethora of different
areas, including partial differential equations [45, 47]. A major open question concerns the quantification of
convergence rates, the understanding of the behaviour in infeasible cases, and the lack of satisfying explana-
tions of the behaviour especially in nonconvex settings. The theory of monotone operators [10, 70] is relevant
to these questions as it is the principal tool in understanding and analyzing the algorithms. Consequently, a
substantial portion of the workshop deals with theoretical advances in monotone operator theory, especially
as they pertain to algorithms and concrete, implementable methods. Connections have been built between
mathematics, industry and physics, where splitting methods have been very successfully employed; see, e.g.,
[15, 39].

The splitting algorithms that were the main topic of this workshop have found significant real-world
applications ranging from e.g., wavefront sensing [55] to road design [15]. The open questions surrounding
these algorithms are not only of pure mathematical interest, but their resolution promises a real impact to the
industrial world. The importance of this workshop was the potential of new knowledge that will make existing
algorithms more efficient and expand their areas of applications through newly formed research connections.



The usage of splitting methods and the corresponding research activities have increased significantly
especially in the past years; see, e.g., [10], [28] and [21], the references therein, as well as the references
listed in the report.

The workshop realized our aim to reach out and include younger researchers (graduate students, postdoc-
toral fellows, and assistant professors) as well as women. In order to make the workshop most productive
to junior experts as well as non-specialists, we have asked some of speakers specifically to write survey ar-
ticles/tutorials for the accompanying conference proceedings volume. The networking opportunities at this
workshop were particularly important to younger researchers and researcher at smaller institutions in terms
of career planning and the formation of collaborative research programs.

A notable aspect of the talks delivered was the role that experimental mathematics played in the develop-
ment of theoretical intuition, especially through visualization. The use of experimental results on benchmark
problems has long been standard practice in research on numerical algorithms; however, the use of mathe-
matical software to test theoretical hypotheses is not part of the mathematical mainstream yet. See the books
by Bailey, Borwein and collaborators [6, 5, 7] for further information. We have dedicated this workshop to
the memory of Jonathan Michael Borwein, a mathematical giant and one of the first strong supporters of this
workshop.

3 Presentation Highlights

In this section, we highlight some of the recent developments and problems discussed at the workshop. In
particular, we focus on recent scientific progress as well as contributions of participants to the workshop. The
topics are grouped into areas, but common themes that arose throughout the conference are (i) the potential
of splitting methods for solving large-scale and/or nonconvex problems, and (ii) the need for a theoretical
foundation to explain their success.

3.1 Douglas—-Rachford / ADMM-type Algorithms

The Douglas—Rachford algorithm [33], which is a linear implicit iterative method, was originally developed
in 1956 for solving partial differential equations. In 1979, Lions and Mercier [54] extended the Douglas—
Rachford algorithm to an operator splitting method for finding a zero of the sum of two maximally monotone
operators.

The Douglas—Rachford algorithm was discussed in several talks and from different viewpoints. When
applied to normal cone operators of two nonempty closed convex sets U and V', with associated projectors
Py and Py as well as reflectors Ry = 2Py — Id and Ry = 2Py — 1d, the governing iteration takes the form

Id+Ry Ry .
2 n»y

where Id denotes the identity operator of the Hilbert space X. Under appropriate assumptions, the so-
generated sequence (Z,)nen has the remarkable property that (Pya,),en converges to a solution of the
underlying feasibility problem, i.e., to a point in U N V. More generally, one may try to find a zero of
the sum of two maximally monotone operators. The Douglas—Rachford algorithm proceeds analogously
but the projectors Py and Py are then replaced by the resolvents J4 and Jp (which are the proximity
operators in the case of minimization of two functions). The method was rediscovered by different people
working in different disciplines. Noteworthy is the application of the Douglas—Rachford algorithm in phase
retrieval with a support constraint (as opposed to support and nonnegativity), where it is known as the hybrid
input-output (HIO) algorithm, pioneered by Fienup [41] in 1982. (See also [11] for a view from convex
optimization.) A very interesting development originates with Elser [37], who has very successfully applied
the Douglas—Rachford algorithm to various continuous and discrete, nonconvex problems [39, 48]. In the
physics community, the algorithm is now known as the difference map algorithm and its product space version
a la Pierra [65] as divide and concur. A method closely related to the Douglas—Rachford algorithm is the
Alternating Direction Method of Multipliers (ADMM) [18, 22, 50, 66].

Jim Burke described methods for solving large-scale affine inclusion problems on the product/intersection
of convex sets, reporting on his recent work [26]. Robert Csetnek surveyed his 2017 work with Radu Bot on
the ADMM for monotone operators, focussing on convergence analysis and rates [20].

xo € X, (Vn €N) zpq = (1)



Figure 2: Dependence on the starting point

Scott Lindstrom reported on his recent work of applications of the Douglas—Rachford algorithm [19, 53].
It was very striking to observe that the behaviour in the Euclidean plane, for a line and a p-sphere, leads to
breathtakingly beautiful pictures concerning the Douglas—Rachford algorithm applied to an ellipse and a line
in the Euclidean plane.

In Figure 1, differently colored dots correspond to unique sequences of iterates with distinct starting
points. The solutions for the feasibility problem are the two feasible points where the line intersects with
the ellipse. Depending upon the starting location, sequences may converge to these solutions as the two
blue sequences do on the far left and far right. However, if the algorithm starts elsewhere, sequences may
be pulled into attractive instances of what we are calling basins of periodicity which prevent them from
converging to the solution. Pictures like this are extremely valuable for studying how small changes to a
problem (such as stretching a sphere into an ellipse) can cause drastic changes to the behaviour of a simple
algorithm. They also illustrate what kinds of things can go "wrong.” Zooming in, we find lovely swirls and
stars for subsequences converging to periodic points. This particular image was created using Cinderella,
and it appears on the poster for the Australian Mathematical Society’s special interest group Mathematics of
Computation and Optimization (MoCaO).

Next, the Douglas—Rachford algorithm is run starting from each individual pixel (Figure 2). We compute
the first one thousand iterates before coloring the starting points according to which periodic point (or feasible
point) their one thousandth iterate was nearest to. The apparent basins which emerge in this image appear
more polyhedral than one might expect from such a problem. Works like this highlight the importance of
parallel computing. Again, this picture is the main poster image for Australian Mathematical Society special
interest group Mathematics of Computation and Optimization (MoCaO), and the colors were inspired by
Australian aboriginal art.
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Figure 3: Rotating the line

Starting in the repelling basin for a pair of period-2 points and plotting every second iterate for the
Douglas—Rachford method (see Figure 3), we make small changes to one of the sets. The set in question is
a line, part of which is visible in the Bottom right corner of each frame. As we rotate the line, we see the
“speed” at which iterates escape from the source basin decreases until eventually the source basin turns into
a sink basin.

Panos Patrinos presented a new global convergence theory based on the Douglas—Rachford envelope as
well as faster variants [64, 74].

Walaa Moursi surveyed her recent results on the Douglas—Rachford algorithm in the possibly inconsistent
case [62]. In the classical feasibility setting (corresponding to minimizing a sum of indicator functions), the
behaviour is now well understood: the shadow sequence approaches a generalized solution realizing the “gap”
between the sets while the governing sequences escapes to infinity (see Figures 4 and 5 for the consistent and
inconsistent case, respectively). This special case is useful to obtain least squares solutions when working
in a product space [13]; see Figure 6. However, even in the classical convex-function setting, there are
various open problems concerning the behaviour of the shadow sequences pertaining to boundedness and
convergence to generalized solutions. (See [16] for additional information.)

Minh Dao reported on cases when the Douglas—Rachford algorithm converges in finitely many steps
[14, 12]. Moreover, he also surveyed recent joint work with Hung Phan (on linear convergence [30]) and
with Matt Tam (on a Lyapunov function approach [31]).

Shawn Wang discussed his new (unpublished) results on a regularized version of the Douglas—Rachford
algorithm for finding minimum-norm solution for the sum of two maximally monotone operators.

Veit Elser shared his insights on a relaxed version of the Douglas—Rachford algorithm, termed “reflect-
reflect-relax (RRR)” on hard combinatorial satisfiability problems including bit retrieval [38]. Interestingly,
he viewed RRR as a sampling method. The choice of the optimal relaxation parameter is an open problem.

Pontus Giselsson reported on his very recent tight convergence rates on the Douglas—Rachford and related
algorithms [40, 46].

A new concept, the “partial error bound condition” was the topic of Xiaoming Yuan’s talk. He showed
how this very general condition gives rise to many linear convergence results for ADMM. This is work in
progress with Y. Liu, S. Zeng, and J. Zhang.

Fran Aragon Artacho reported on joint work with his student Ruben Campoy [2] on modification of the
Douglas—Rachford algorithm to solve best approximation problems.



Figure 4: A GeoGebra snapshot that illustrates the behaviour of Douglas—Rachford method in the case of
consistent feasibility problems. Two intersecting lines in R?, U the blue line and V the red line. The first few

iterates of the governing sequence (T"x¢)nen (red points) and the shadow sequence (PyT"zg)nen (blue
points) are also depicted.

PyT3z = lim PyT"x

n—oo
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Figure 5: A GeoGebra snapshot that illustrates Douglas—Rachford method in the case of inconsistent feasi-
bility problems. Two nonintersecting polyhedral sets in R?, U and V. The first few iterates of the governing

sequence (T"x),en (red points) and the shadow sequence (Py1™x),cn (blue points) are also depicted.
Shown is the minimal displacement vector v as well.



Figure 6: Obtaining least-squares solutions by employing Douglas—Rachford in a suitable product space.

Renata Sotirov discussed the quadratic shortest path problem, which is NP-hard, and solution strategies.
One method was based on ADMM applied to a semidefinite programming relaxation. See [51] and the
references therein.

3.2 Proximal gradient methods and their Accelerations

One of the highlights was the opening talk of the conference, held by Dr. Hedy Attouch, on the acceleration
of first-order proximal gradient methods in the style of Nesterov [63]. This has been a subject of intense
research over the past years. It is still not known whether the original FISTA method by Beck-Teboulle [17]
has convergent iterates. Attouch drew the connection to continuous models and highlighted his many nice
recent powerful results including [3]. It is also not known whether a fast version of Douglas—Rachford exists
in the general case.

Sorin-Mihai Grad reported on joint work (in progress), with Radu Bot, on an inertial forward-backward
method for solving vector optimization problems. Specializing to the classical optimization case, one obtains
inertial proximal point methods as studied by Alvarez and Attouch as well as Beck and Teboulle’s ISTA.

Radu Bot surveyed his recent work with Sebastian Banert on a novel algorithm [8] for solving difference-
of-convex-functions optimization problems which were traditionally solved by Tao and An’s algorithm [73].

3.3 Other Algorithms

Yura Malitsky considered non-stationary methods for solving variational inequalities based on the golden
ratio.

Elena Resmerita reported on a new method for reconstructing positive solutions of inverse problems based
on the Boltzmann—Shannon entropy [25].

Patrick Combettes and Jonathan Eckstein reported on very general new algorithmic framework [29] that
allows for asynchronous computation. One interesting open problem is the choice of good parameters. Eck-
stein’s talk focussed on a special case that is still very powerful [35].

Isao Yamada discussed hierarchical optimization problems and corresponding solution strategies by the
hybrid steepest descent method. He also applied his algorithm for a certain statistical estimation problem,



enhancing the popular LASSO technique. See [75, 76] for further information.

Evgeni Nurminski reported on current work (in progress) on solving monotone variational inequality
problems using Fejer-type iterations.

Dominik Noll showed how, by combining local optimization methods tailored to lower-C' and upper
C'" functions with global optimization methods, one obtains robustness certificates for robust optimization
problems arising in control engineering.

Reinier Diaz Millan discussed on-going joint work with Regina Burachik on algorithms for solving non-
monotone variational inequalities [24].

Russell Luke surveyed a very general framework to obtain rate-of-convergence results for iterations of
set-valued operators [56] while given a live demonstration of his ProxToolbox [67].

Max Goncalves reported on joint work with Jefferson Melo and Marques Alves on convergence results
on a variable metric proximal ADMM [42, 43].

Jefferson Melo discussed a regularized variants of ADMM with an improved iteration complexity [43,
44, 58, 59].

A very general framework featuring quasi-nonexpansive operators was presented by Cegielski [27]. He
demonstrated that it is closed under relaxations, convex combinations and compositions. In tandem with
regularity properties, various rate-of-convergence results are obtained.

3.4 Convex Analysis, Variational Analysis, Control and Optimization, and Mono-
tone Operator Theory

Aris Daniilidis reported on new (unpublished) work on the extension of Lipschitz functions related to the
recent work [4].

Asen Dontchev surveyed the classical Hildebrand-Graves, Lyusternik-Graves, and Bartle-Graves theo-
rems. Relating to [32], he formulated a conjecture concerning a nonsmooth Bartle-Graves theorem.

The importance of error bounds for analyzing convergence rates of first-order methods was demonstrated
in Anthony So’s talk which was based on [77]. So provided a new framework allowing for a unified treatment
of various existing error bounds.

Genaro Lopez reported on joint work in progress (with A. Nicolae and U. Kohlenbach) on the moduli of
regularity and uniqueness [52] as a tool for studying Fejer monotone

The classical Frank-Wolfe theorem states that a quadratic function that is bounded below on a convex
polyhedron must attains its infimum. In his talk, Juan Enrique Martinez-Legaz discussed generalizations of
this result to more general classes of convex sets (see [57] for the accompanying forthcoming paper).

Yao-Liang Yu reported on work (in progress) on conditions sufficient for guaranteeing that the proximal
map of the sum of functions is a composition of the individual proximal maps. This work in progress has in-
teresting applications since proximal operators are generally not easy to compute but are integral components
in splitting algorithms.

Stephen Simons surveyed the beautiful framework of quasidense multifunctions which generalize mono-
tone operators. Many results can be obtained with cleaner proofs, and the theory offers opportunities to deal
with gradients of nonconvex functions. (See [69, 71, 72] for further information.)

Complementary to Yu’s talk above, Samir Adly reported on recent work on finding the proximity operator
for the sum of two functions. He offered a solution to this problem at the cost of suitably re-defining the
proximity operator [1].

Yalcin Kaya reported on his work on a solving a nonsmooth optimal control problem asking to minimize
the total variation of the control variables along a general function. An illustrative convex problem was fully
analyzed with asymptotic results provided.

The importance of error bounds for convergence results of algorithms was highlighted in the talk by
Adrian Lewis [34].

Rafal Goebel discussed necessary and sufficient conditions for pointwise asymptotic stability in terms of
set-valued Lyapunov functions, its robustness under perturbations, and how it can be guaranteed in a control
system by optimal control.

Regina Burachik presented recent joint work with Victoria Martin-Marquez analyzing (in)consistency of
a convex feasibility problem via a dual support function formulation.



4 Outcome of the Meeting

The organizers will edit a Conference Proceedings volume entitled Splitting Algorithms, Modern Operator
Theory, and Applications, published by Springer. A good number of the participants has indicated a strong
interest to contribute to this volume; in addition, several researchers who were unable to attend the work-
shop have been invited to contribute as well, including: Stephen Boyd (Stanford), Amir Beck (Technion),
Yair Censor (Haifa), Simeon Reich (Technion), Shoham Sabach (Technion), Claudia Sagastizabal (IMPA),
Marc Teboulle (Tel Aviv), Michel Thera (Limoges), Lionel Thibault (Montpellier) Henry Wolkowicz (Wa-
terloo). This volume will be dedicated to articles, surveys and tutorials related to the algorithm as outlined in
Section 2.
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